Processing math: 100%
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1996, Volume 187, Issue 12, Pages 1819–1852
DOI: https://doi.org/10.1070/SM1996v187n12ABEH000179
(Mi sm179)
 

This article is cited in 24 scientific papers (total in 24 papers)

A transcendence measure for π2

V. N. Sorokin

M. V. Lomonosov Moscow State University
References:
Abstract: A new proof of the fact that π2 is transcendental is proposed. A modification of Hermite's method for an expressly constructed Nikishin system is used. The Beukers integral, which was previously used to prove Apéry's theorem on the irrationality of ζ(2) and ζ(3) is a special case of this construction.
Received: 13.11.1995
Bibliographic databases:
UDC: 517.5
MSC: 11J82, 41A21
Language: English
Original paper language: Russian
Citation: V. N. Sorokin, “A transcendence measure for π2”, Sb. Math., 187:12 (1996), 1819–1852
Citation in format AMSBIB
\Bibitem{Sor96}
\by V.~N.~Sorokin
\paper A transcendence measure for $\pi^2$
\jour Sb. Math.
\yr 1996
\vol 187
\issue 12
\pages 1819--1852
\mathnet{http://mi.mathnet.ru/eng/sm179}
\crossref{https://doi.org/10.1070/SM1996v187n12ABEH000179}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1442212}
\zmath{https://zbmath.org/?q=an:0876.11035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WQ48500010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030299675}
Linking options:
  • https://www.mathnet.ru/eng/sm179
  • https://doi.org/10.1070/SM1996v187n12ABEH000179
  • https://www.mathnet.ru/eng/sm/v187/i12/p87
  • This publication is cited in the following 24 articles:
    1. Claude Brezinski, Michela Redivo-Zaglia, Extrapolation and Rational Approximation, 2020, 7  crossref
    2. Zudilin W., “A Determinantal Approach to Irrationality”, Constr. Approx., 45:2 (2017), 301–310  crossref  mathscinet  zmath  isi  scopus
    3. Fischler S., Rivoal T., “Multiple Zeta Values, Pade Approximation and Vasilyev'S Conjecture”, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 15:SI (2016), 1–24  mathscinet  zmath  isi
    4. Stéphane Fischler, “Nesterenko's linear independence criterion for vectors”, Monatsh Math, 177:3 (2015), 397  crossref
    5. W. Zudilin, “Arithmetic hypergeometric series”, Russian Math. Surveys, 66:2 (2011), 369–420  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    6. Cresson, PJ, “Multiple hypergeometric series and polyzetas”, Bulletin de La Societe Mathematique de France, 136:1 (2008), 97  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    7. C. Krattenthaler, T. Rivoal, “An identity of Andrews, multiple integrals, and very-well-poised hypergeometric series”, Ramanujan J, 13:1-3 (2007), 203  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    8. Salah Boukraa, Saoud Hassani, Jean-Marie Maillard, Nadjah Zenine, “From Holonomy of the Ising Model Form Factors to n-Fold Integrals and the Theory of Elliptic Curves”, SIGMA, 3 (2007), 099, 43 pp.  mathnet  crossref  mathscinet  zmath
    9. Boukraa, S, “Singularities of n-fold integrals of the Ising class and the theory of elliptic curves”, Journal of Physics A-Mathematical and Theoretical, 40:39 (2007), 11713  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    10. Georges Rhin, Carlo Viola, “Multiple integrals and linear forms in zeta-values”, Funct. Approx. Comment. Math., 37:2 (2007)  crossref
    11. Yu. V. Nesterenko, “On an Identity of Mahler”, Math. Notes, 79:1 (2006), 97–108  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    12. Huttner, M, “Constructible sets of linear differential equations and effective rational approximations of polylogarithmic functions”, Israel Journal of Mathematics, 153 (2006), 1  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    13. S. A. Zlobin, “Expansion of Multiple Integrals in Linear Forms”, Math. Notes, 77:5 (2005), 630–652  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    14. Fischler, S, “Irrationality of zeta values”, Asterisque, 2004, no. 294, 27  mathscinet  zmath  isi
    15. Zlobin, SA, “Decompositions of multiple integrals into linear forms”, Doklady Mathematics, 70:2 (2004), 758  mathscinet  isi  elib
    16. E. A. Ulanskii, “Identities for Generalized Polylogarithms”, Math. Notes, 73:4 (2003), 571–581  mathnet  crossref  crossref  mathscinet  zmath  isi
    17. S. A. Zlobin, “Integrals Expressible as Linear Forms in Generalized Polylogarithms”, Math. Notes, 71:5 (2002), 711–716  mathnet  crossref  crossref  mathscinet  zmath  isi
    18. V. N. Sorokin, “Cyclic graphs and Apéry's theorem”, Russian Math. Surveys, 57:3 (2002), 535–571  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    19. W. V. Zudilin, “Very well-poised hypergeometric series and multiple integrals”, Russian Math. Surveys, 57:4 (2002), 824–826  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    20. Fischler, S, “Linear forms in multiple zeta values and multiple integrals”, Comptes Rendus Mathematique, 335:1 (2002), 1  crossref  mathscinet  zmath  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:671
    Russian version PDF:355
    English version PDF:40
    References:69
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025