Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 4, Pages 475–504
DOI: https://doi.org/10.1070/SM2006v197n04ABEH003767
(Mi sm1545)
 

This article is cited in 52 scientific papers (total in 52 papers)

Discrete spectrum of an asymmetric pair of waveguides coupled through a window

D. I. Borisovab

a Bashkir State Pedagogical University
b Nuclear Physics Institute, Academy of Sciences of the Czech Republic
References:
Abstract: In this paper one analyses the discrete spectrum of an asymmetric pair of two-dimensional quantum waveguides with common boundary in which a window of finite size is made. The phenomenon of new eigenvalues arising at the boundary of the essential spectrum as the length of the window passes over critical values is considered. For the newly arising eigenvalues one constructs asymptotic expansions with respect to the small parameter equal to the difference between the window length and the closest critical value. The behaviour of the spectrum under an unrestricted growth of the length of the window is also under investigation; asymptotic expansions for eigenvalues with respect to the large parameter, the length of the window, are constructed.
Bibliography: 22 titles.
Received: 17.08.2004 and 24.11.2005
Bibliographic databases:
UDC: 517.958
MSC: 47F05, 47N50, 35P20
Language: English
Original paper language: Russian
Citation: D. I. Borisov, “Discrete spectrum of an asymmetric pair of waveguides coupled through a window”, Sb. Math., 197:4 (2006), 475–504
Citation in format AMSBIB
\Bibitem{Bor06}
\by D.~I.~Borisov
\paper Discrete spectrum of an asymmetric pair of waveguides coupled through a~window
\jour Sb. Math.
\yr 2006
\vol 197
\issue 4
\pages 475--504
\mathnet{http://mi.mathnet.ru/eng/sm1545}
\crossref{https://doi.org/10.1070/SM2006v197n04ABEH003767}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2263787}
\zmath{https://zbmath.org/?q=an:1156.35066}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000239727500009}
\elib{https://elibrary.ru/item.asp?id=9195177}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747072086}
Linking options:
  • https://www.mathnet.ru/eng/sm1545
  • https://doi.org/10.1070/SM2006v197n04ABEH003767
  • https://www.mathnet.ru/eng/sm/v197/i4/p3
  • This publication is cited in the following 52 articles:
    1. D. I. Borisov, A. I. Mukhametrakhimova, “Asymptotics for problems in perforated domains with Robin nonlinear condition on the boundaries of cavities”, Sb. Math., 213:10 (2022), 1318–1371  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. S. A. Nazarov, “Asimptoticheskii analiz spektra kvantovogo volnovoda s shirokim “oknom” Neimana v svete mekhaniki treschin”, Matematicheskie voprosy teorii rasprostraneniya voln. 52, Zap. nauchn. sem. POMI, 516, POMI, SPb., 2022, 176–237  mathnet
    3. Borisov I D., Golovina A.M., “On Finitely Many Resonances Emerging Under Distant Perturbations in Multi-Dimensional Cylinders”, J. Math. Anal. Appl., 496:2 (2021), 124809  crossref  mathscinet  isi
    4. Borisov I D., Zezyulin D.A., Znojil M., “Bifurcations of Thresholds in Essential Spectra of Elliptic Operators Under Localized Non-Hermitian Perturbations”, Stud. Appl. Math., 146:4 (2021), 834–880  crossref  mathscinet  isi
    5. S. A. Nazarov, “The preservation of threshold resonances and the splitting off of eigenvalues from the threshold of the continuous spectrum of quantum waveguides”, Sb. Math., 212:7 (2021), 965–1000  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    6. D. I. Borisov, A. I. Mukhametrakhimova, “Uniform convergence and asymptotics for problems in domains finely perforated along a prescribed manifold in the case of the homogenized Dirichlet condition”, Sb. Math., 212:8 (2021), 1068–1121  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    7. Vorobiev A.M., “Resonance Asymptotics For Quantum Waveguides With Semitransparent Multi-Perforated Wall”, Nanosyst.-Phys. Chem. Math., 12:4 (2021), 462–471  crossref  isi
    8. Borisov I D., Zezyulin D.A., “Bifurcations of Essential Spectra Generated By a Small Non-Hermitian Hole. i. Meromorphic Continuations”, Russ. J. Math. Phys., 28:4 (2021), 416–433  crossref  mathscinet  isi
    9. D. I. Borisov, A. M. Golovina, “On Occurrence of Resonances from Multiple Eigenvalues of the Schrödinger Operator in a Cylinder with Distant Perturbations”, J Math Sci, 258:1 (2021), 1  crossref
    10. Borisov D., Cardone G., “Spectra of Operator Pencils With Small P & Xdcab;& X1D4Af;& Xdcaf;-Symmetric Periodic Perturbation”, ESAIM-Control OPtim. Calc. Var., 26 (2020), UNSP 21  crossref  mathscinet  isi
    11. S. A. Nazarov, “Threshold resonances and virtual levels in the spectrum of cylindrical and periodic waveguides”, Izv. Math., 84:6 (2020), 1105–1160  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. Vorobiev A.M., Trifanova E.S., Popov I.Y., “Resonance Asymptotics For a Pair Quantum Waveguides With Common Semitransparent Perforated Wall”, Nanosyst.-Phys. Chem. Math., 11:6 (2020), 619–627  crossref  mathscinet  isi  scopus
    13. Bagmutov A.S., Popov I.Y., “Window-Coupled Nanolayers: Window Shape Influence on One-Particle and Two-Particle Eigenstates”, Nanosyst.-Phys. Chem. Math., 11:6 (2020), 636–641  crossref  isi
    14. D. I. Borisov, A. M. Golovina, A. I. Mukhametrakhimova, “Analytic Continuation of Resolvents of Elliptic Operators in a Multidimensional Cylinder”, J Math Sci, 250:2 (2020), 260  crossref
    15. D. I. Borisov, A. M. Golovina, “O vozniknovenii rezonansov iz kratnogo sobstvennogo znacheniya operatora Shredingera v tsilindre s razbegayuschimisya vozmuscheniyami”, Differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 163, VINITI RAN, M., 2019, 3–14  mathnet  mathscinet
    16. Vorobiev A.M., Bagmutov A.S., Popov I A., “On Formal Asymptotic Expansion of Resonance For Quantum Waveguide With Perforated Semitransparent Barrier”, Nanosyst.-Phys. Chem. Math., 10:4 (2019), 415–419  crossref  mathscinet  isi
    17. Piat V.Ch., Nazarov S.A., Taskinen J., “Embedded Eigenvalues Forwater-Waves in Athree-Dimensional Channel With Athin Screen”, Q. J. Mech. Appl. Math., 71:2 (2018), 187–220  crossref  mathscinet  zmath  isi
    18. S. A. Nazarov, “Transmission of waves through a small aperture in the cross-wall in an acoustic waveguide”, Siberian Math. J., 59:1 (2018), 85–101  mathnet  crossref  crossref  isi  elib
    19. S. A. Nazarov, “Asymptotics of eigenvalues in spectral gaps of periodic waveguides with small singular perturbations”, J. Math. Sci. (N. Y.), 243:5 (2019), 746–773  mathnet  crossref
    20. D. I. Borisov, “Perturbations of the Continuous Spectrum of a Certain Nonlinear Two-Dimensional Operator Sheaf”, J. Math. Sci. (N. Y.), 252:2 (2021), 135–146  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:772
    Russian version PDF:224
    English version PDF:31
    References:86
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025