Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1991, Volume 69, Issue 2, Pages 307–340
DOI: https://doi.org/10.1070/SM1991v069n02ABEH001937
(Mi sm1168)
 

This article is cited in 39 scientific papers (total in 39 papers)

The two terms asymptotics of the solutions of spectral problems with singular perturbations

S. A. Nazarov

Leningrad State University
References:
Abstract: Two groups of singularly perturbed boundary value problems for eigenvalues are considered. The first group contains the following types of perturbations: a small parameter in front of the leading derivatives in the equation or in the boundary condition, a domain with rapidly oscillating boundary, or a thin domain. Problems with perturbations of the data on a set with small diameter ε constitute the second group.
Received: 26.01.1989
Bibliographic databases:
UDC: 517.95
MSC: 35B25, 35P15
Language: English
Original paper language: Russian
Citation: S. A. Nazarov, “The two terms asymptotics of the solutions of spectral problems with singular perturbations”, Math. USSR-Sb., 69:2 (1991), 307–340
Citation in format AMSBIB
\Bibitem{Naz90}
\by S.~A.~Nazarov
\paper The two terms asymptotics of the solutions of spectral problems with singular perturbations
\jour Math. USSR-Sb.
\yr 1991
\vol 69
\issue 2
\pages 307--340
\mathnet{http://mi.mathnet.ru/eng/sm1168}
\crossref{https://doi.org/10.1070/SM1991v069n02ABEH001937}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1049991}
\zmath{https://zbmath.org/?q=an:0732.35004}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1991SbMat..69..307N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991GB41500001}
Linking options:
  • https://www.mathnet.ru/eng/sm1168
  • https://doi.org/10.1070/SM1991v069n02ABEH001937
  • https://www.mathnet.ru/eng/sm/v181/i3/p291
  • This publication is cited in the following 39 articles:
    1. S. A. Nazarov, J. Taskinen, “Model of a Plane Strain-State of a Two-Dimensional Plate with Small Periodic Areas of Fixed Edge”, J Math Sci, 283:4 (2024), 586  crossref
    2. S. A. Nazarov, “Influence of Winkler–Steklov conditions on natural oscillations of elastic weighty body”, Ufa Math. J., 16:1 (2024), 53–79  mathnet  crossref
    3. S. A. Nazarov, “Parasitic eigenvalues of spectral problems for the Laplacian with third-type boundary conditions”, Comput. Math. Math. Phys., 63:7 (2023), 1237–1253  mathnet  mathnet  crossref  crossref
    4. S. A. Nazarov, Ya. Taskinen, “Model ploskogo deformirovannogo sostoyaniya dvumernoi plastiny s melkimi pochti periodicheskimi uchastkami zaschemleniya kraya”, Matematicheskie voprosy teorii rasprostraneniya voln. 51, Zap. nauchn. sem. POMI, 506, POMI, SPb., 2021, 130–174  mathnet
    5. D. V. Korikov, “Asymptotics of Maxwell system eigenvalues in a domain with small cavities”, St. Petersburg Math. J., 31:1 (2020), 13–51  mathnet  crossref  isi  elib
    6. G. A. Karagulyan, H. Mkoyan, “An exponential estimate for the cubic partial sums of multiple Fourier series”, Izv. Math., 83:2 (2019), 273–286  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. S. A. Nazarov, “The asymptotics of natural oscillations of a long two-dimensional Kirchhoff plate with variable cross-section”, Sb. Math., 209:9 (2018), 1287–1336  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. R. R. Gadyl'shin, A. L. Piatnitski, G. A. Chechkin, “On the asymptotic behaviour of eigenvalues of a boundary-value problem in a planar domain of Steklov sieve type”, Izv. Math., 82:6 (2018), 1108–1135  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. S. A. Nazarov, “Breakdown of cycles and the possibility of opening spectral gaps in a square lattice of thin acoustic waveguides”, Izv. Math., 82:6 (2018), 1148–1195  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. S. A. Nazarov, “The spectra of rectangular lattices of quantum waveguides”, Izv. Math., 81:1 (2017), 29–90  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. Monique Dauge, Erwan Faou, Zohar Yosibash, Encyclopedia of Computational Mechanics Second Edition, 2017, 1  crossref
    12. S. A. Nazarov, “Nonreflection and trapping of elastic waves in a slightly curved isotropic strip”, Dokl. Phys, 59:3 (2014), 139  crossref  mathscinet
    13. S. A. Nazarov, “Asymptotics of eigenvalues of the Dirichlet problem in a skewed T-shaped waveguide”, Comput. Math. Math. Phys., 54:5 (2014), 793–814  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    14. S. A. Nazarov, “Bounded solutions in a T-shaped waveguide and the spectral properties of the Dirichlet ladder”, Comput. Math. Math. Phys., 54:8 (2014), 1261–1279  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    15. S. A. Nazarov, “Structure of the spectrum of a net of quantum waveguides and bounded solutions of a model problem at the threshold”, Dokl. Math, 90:2 (2014), 637  crossref  mathscinet  zmath
    16. Cardone G., Nazarov S.A., Ruotsalainen K., “Bound States of a Converging Quantum Waveguide”, ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer., 47:1 (2013), 305–315  crossref  mathscinet  zmath  isi
    17. Denis Borisov, Giuseppe Cardone, Luisa Faella, Carmen Perugia, “Uniform resolvent convergence for strip with fast oscillating boundary”, Journal of Differential Equations, 2013  crossref  mathscinet
    18. Nazarov S.A., “Trapped Surface Waves in a Periodic Layer of a Heavy Liquid”, Pmm-J. Appl. Math. Mech., 75:2 (2011), 235–244  crossref  mathscinet  zmath  isi  elib
    19. V. A. Kozlov, S. A. Nazarov, “The spectrum asymptotics for the Dirichlet problem in the case of the biharmonic operator in a domain with highly indented boundary”, St. Petersburg Math. J., 22:6 (2011), 941–983  mathnet  crossref  mathscinet  zmath  isi
    20. Youcef Amirat, Gregory A. Chechkin, Rustem R. Gadyl’shin, “Spectral boundary homogenization in domains with oscillating boundaries”, Nonlinear Analysis: Real World Applications, 11:6 (2010), 4492  crossref  mathscinet  zmath  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:903
    Russian version PDF:206
    English version PDF:28
    References:86
    First page:3
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025