This article is cited in 7 scientific papers (total in 7 papers)
About the power law of the PageRank vector distribution. Part 2. Backley–Osthus model, power law verification for this model and setup of real search engines
Abstract:
In the second part of this paper, we consider the Buckley–Osthus model for the formation of a webgraph. For the networks generated according to this model, we numerically calculate the PageRank vector. We show that the components of this vector are distributed according to the power law. We also discuss the computational aspects of this model with respect to different numerical methods for the calculation of the PageRank vector, presented in the first part of the paper. Finally, we describe a general model for the web-page ranking and some approaches to solve the optimization problem arising when learning this model.
Key words:
Markov chain, ergodic theorem, multinomial distribution, measure concentration, maximum likelihood estimate, Google problem, gradient descent, automatic differentiation, power law distribution.
Citation:
A. Gasnikov, P. Dvurechensky, M. Zhukovskii, S. Kim, S. Plaunov, D. Smirnov, F. Noskov, “About the power law of the PageRank vector distribution. Part 2. Backley–Osthus model, power law verification for this model and setup of real search engines”, Sib. Zh. Vychisl. Mat., 21:1 (2018), 23–45; Num. Anal. Appl., 11:1 (2018), 16–32
\Bibitem{GasDvuZhu18}
\by A.~Gasnikov, P.~Dvurechensky, M.~Zhukovskii, S.~Kim, S.~Plaunov, D.~Smirnov, F.~Noskov
\paper About the power law of the PageRank vector distribution. Part~2. Backley--Osthus model, power law verification for this model and setup of real search engines
\jour Sib. Zh. Vychisl. Mat.
\yr 2018
\vol 21
\issue 1
\pages 23--45
\mathnet{http://mi.mathnet.ru/sjvm666}
\crossref{https://doi.org/10.15372/SJNM20180102}
\elib{https://elibrary.ru/item.asp?id=32466477}
\transl
\jour Num. Anal. Appl.
\yr 2018
\vol 11
\issue 1
\pages 16--32
\crossref{https://doi.org/10.1134/S1995423918010032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427431900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043687147}
This publication is cited in the following 7 articles:
Pavel Dvurechensky, Alexander Gasnikov, Alexander Tyurin, Vladimir Zholobov, Springer Proceedings in Mathematics & Statistics, 425, Foundations of Modern Statistics, 2023, 511
Marina Danilova, Pavel Dvurechensky, Alexander Gasnikov, Eduard Gorbunov, Sergey Guminov, Dmitry Kamzolov, Innokentiy Shibaev, Springer Optimization and Its Applications, 191, High-Dimensional Optimization and Probability, 2022, 79
Eduard Gorbunov, Pavel Dvurechensky, Alexander Gasnikov, “An Accelerated Method for Derivative-Free Smooth Stochastic Convex Optimization”, SIAM J. Optim., 32:2 (2022), 1210
P. Dvurechensky, E. Gorbunov, A. Gasnikov, “An accelerated directional derivative method for smooth stochastic convex optimization”, Eur. J. Oper. Res., 290:2 (2021), 601–621
Mikhail Koshelev, “New lower bound on the modularity of Johnson graphs”, Moscow J. Comb. Number Th., 10:1 (2021), 77
Nikita Derevyanko, Mikhail Koshelev, Andrei Raigorodskii, Trends in Mathematics, 14, Extended Abstracts EuroComb 2021, 2021, 221
K. Kovalenko, “On the independence number and the chromatic number of generalized preferential attachment models”, Discret Appl. Math., 285 (2020), 301–306