Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 044, 31 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.044
(Mi sigma390)
 

This article is cited in 9 scientific papers (total in 9 papers)

Quantum Symmetries for Exceptional SU(4) Modular Invariants Associated with Conformal Embeddings

Robert Coquereaux, Gil Schieber

Centre de Physique Théorique (CPT), Luminy, Marseille, France
Full-text PDF (562 kB) Citations (9)
References:
Abstract: Three exceptional modular invariants of SU(4) exist at levels 4, 6 and 8. They can be obtained from appropriate conformal embeddings and the corresponding graphs have self-fusion. From these embeddings, or from their associated modular invariants, we determine the algebras of quantum symmetries, obtain their generators, and, as a by-product, recover the known graphs E4, E6 and E8 describing exceptional quantum subgroups of type SU(4). We also obtain characteristic numbers (quantum cardinalities, dimensions) for each of them and for their associated quantum groupoïds.
Keywords: quantum symmetries; modular invariance; conformal field theories.
Received: December 24, 2008; in final form March 31, 2009; Published online April 12, 2009
Bibliographic databases:
Document Type: Article
MSC: 81R50; 16W30; 18D10
Language: English
Citation: Robert Coquereaux, Gil Schieber, “Quantum Symmetries for Exceptional SU(4) Modular Invariants Associated with Conformal Embeddings”, SIGMA, 5 (2009), 044, 31 pp.
Citation in format AMSBIB
\Bibitem{CoqSch09}
\by Robert Coquereaux, Gil Schieber
\paper Quantum Symmetries for Exceptional $\mathrm{SU}(4)$ Modular Invariants Associated with Conformal Embeddings
\jour SIGMA
\yr 2009
\vol 5
\papernumber 044
\totalpages 31
\mathnet{http://mi.mathnet.ru/sigma390}
\crossref{https://doi.org/10.3842/SIGMA.2009.044}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2506168}
\zmath{https://zbmath.org/?q=an:1160.81405}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267900044}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79960601659}
Linking options:
  • https://www.mathnet.ru/eng/sigma390
  • https://www.mathnet.ru/eng/sigma/v5/p44
  • This publication is cited in the following 9 articles:
    1. Cain Edie-Michell, “Type 𝐼𝐼 quantum subgroups of 𝔰𝔩_{𝔑}. ℑ: Symmetries of local modules”, Comm. Amer. Math. Soc., 3:3 (2023), 112  crossref
    2. Robert Coquereaux, Applied and Numerical Harmonic Analysis, Theoretical Physics, Wavelets, Analysis, Genomics, 2023, 169  crossref
    3. Komargodski Z., Ohmori K., Roumpedakis K., Seifnashri S., “Symmetries and Strings of Adjoint Qcd(2)”, J. High Energy Phys., 2021, no. 3, 103  crossref  mathscinet  isi  scopus
    4. Schopieray A., “Lie Theory For Fusion Categories: a Research Primer”, Topological Phases of Matter and Quantum Computation, Contemporary Mathematics, 747, eds. Bruillard P., Marrero C., Plavnik J., Amer Mathematical Soc, 2020, 1–26  crossref  mathscinet  isi  scopus
    5. Schopieray A., “Level Bounds For Exceptional Quantum Subgroups in Rank Two”, Int. J. Math., 29:5 (2018), 1850034  crossref  mathscinet  zmath  isi  scopus
    6. Coquereaux R., Zuber J.-B., “On sums of tensor and fusion multiplicities”, Journal of Physics A-Mathematical and Theoretical, 44:29 (2011), 295208  crossref  zmath  isi  scopus
    7. Robert Coquereaux, Esteban Isasi, Gil Schieber, “Notes on TQFT Wire Models and Coherence Equations for $SU(3)$ Triangular Cells”, SIGMA, 6 (2010), 099, 44 pp.  mathnet  crossref  mathscinet
    8. Coquereaux R., “Global dimensions for Lie groups at level $k$ and their conformally exceptional quantum subgroups”, Revista de La Union Matematica Argentina, 51:2 (2010), 17–42  zmath  isi
    9. Coquereaux R., Rais R., Tahri E.H., “Exceptional quantum subgroups for the rank two Lie algebras $B_2$ and $G_2$”, J. Math. Phys., 51:9 (2010), 092302, 34 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:263
    Full-text PDF :67
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025