Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2010, Volume 6, 099, 44 pp.
DOI: https://doi.org/10.3842/SIGMA.2010.099
(Mi sigma557)
 

This article is cited in 4 scientific papers (total in 4 papers)

Notes on TQFT Wire Models and Coherence Equations for SU(3)SU(3) Triangular Cells

Robert Coquereauxa, Esteban Isasib, Gil Schiebera

a Centre de Physique Théorique (CPT) Luminy, Marseille, France
b Departamento de Física, Simón Bolívar, Caracas, Venezuela
Full-text PDF (805 kB) Citations (4)
References:
Abstract: After a summary of the TQFT wire model formalism we bridge the gap from Kuperberg equations for SU(3)SU(3) spiders to Ocneanu coherence equations for systems of triangular cells on fusion graphs that describe modules associated with the fusion category of SU(3)SU(3) at level kk. We show how to solve these equations in a number of examples.
Keywords: quantum symmetries; module-categories; conformal field theories; 6j6j symbols.
Received: July 9, 2010; in final form December 16, 2010; Published online December 28, 2010
Bibliographic databases:
Document Type: Article
Language: English
Citation: Robert Coquereaux, Esteban Isasi, Gil Schieber, “Notes on TQFT Wire Models and Coherence Equations for SU(3)SU(3) Triangular Cells”, SIGMA, 6 (2010), 099, 44 pp.
Citation in format AMSBIB
\Bibitem{CoqIsaSch10}
\by Robert Coquereaux, Esteban Isasi, Gil Schieber
\paper Notes on TQFT Wire Models and Coherence Equations for $SU(3)$ Triangular Cells
\jour SIGMA
\yr 2010
\vol 6
\papernumber 099
\totalpages 44
\mathnet{http://mi.mathnet.ru/sigma557}
\crossref{https://doi.org/10.3842/SIGMA.2010.099}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2769916}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000285688500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896061776}
Linking options:
  • https://www.mathnet.ru/eng/sigma557
  • https://www.mathnet.ru/eng/sigma/v6/p99
  • This publication is cited in the following 4 articles:
    1. Liu Zh., Wu J., “Antisymmetric Characters and Fourier Duality”, Commun. Math. Phys., 384:1 (2021), 77–108  crossref  mathscinet  isi
    2. Pineda J.A., Isasi E., Caicedo M.I., “a Conjecture For the Algorithmic Decomposition of Paths Over An Su(3) Ade Graph”, Rev. Mex. Fis., 61:6 (2015), 444–449  mathscinet  isi
    3. Robert Coquereaux, Jean-Bernard Zuber, “Drinfeld Doubles for Finite Subgroups of SU(2)SU(2) and SU(3)SU(3) Lie Groups”, SIGMA, 9 (2013), 039, 36 pp.  mathnet  crossref  mathscinet
    4. Coquereaux R., Zuber J.-B., “On sums of tensor and fusion multiplicities”, Journal of Physics A-Mathematical and Theoretical, 44:29 (2011), 295208  crossref  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:287
    Full-text PDF :50
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025