Abstract:
After a summary of the TQFT wire model formalism we bridge the gap from Kuperberg equations for SU(3)SU(3) spiders to Ocneanu coherence equations for systems of triangular cells on fusion graphs that describe modules associated with the fusion category of SU(3)SU(3) at level kk. We show how to solve these equations in a number of examples.
Keywords:
quantum symmetries; module-categories; conformal field theories; 6j6j symbols.
Received:July 9, 2010; in final form December 16, 2010; Published online December 28, 2010
Citation:
Robert Coquereaux, Esteban Isasi, Gil Schieber, “Notes on TQFT Wire Models and Coherence Equations for SU(3)SU(3) Triangular Cells”, SIGMA, 6 (2010), 099, 44 pp.
\Bibitem{CoqIsaSch10}
\by Robert Coquereaux, Esteban Isasi, Gil Schieber
\paper Notes on TQFT Wire Models and Coherence Equations for $SU(3)$ Triangular Cells
\jour SIGMA
\yr 2010
\vol 6
\papernumber 099
\totalpages 44
\mathnet{http://mi.mathnet.ru/sigma557}
\crossref{https://doi.org/10.3842/SIGMA.2010.099}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2769916}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000285688500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896061776}
Linking options:
https://www.mathnet.ru/eng/sigma557
https://www.mathnet.ru/eng/sigma/v6/p99
This publication is cited in the following 4 articles:
Liu Zh., Wu J., “Antisymmetric Characters and Fourier Duality”, Commun. Math. Phys., 384:1 (2021), 77–108
Pineda J.A., Isasi E., Caicedo M.I., “a Conjecture For the Algorithmic Decomposition of Paths Over An Su(3) Ade Graph”, Rev. Mex. Fis., 61:6 (2015), 444–449
Robert Coquereaux, Jean-Bernard Zuber, “Drinfeld Doubles for Finite Subgroups of SU(2)SU(2) and SU(3)SU(3) Lie Groups”, SIGMA, 9 (2013), 039, 36 pp.
Coquereaux R., Zuber J.-B., “On sums of tensor and fusion multiplicities”, Journal of Physics A-Mathematical and Theoretical, 44:29 (2011), 295208