Processing math: 100%
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2015, Volume 70, Issue 5, Pages 789–856
DOI: https://doi.org/10.1070/RM2015v070n05ABEH004964
(Mi rm9651)
 

This article is cited in 40 scientific papers (total in 40 papers)

Integrable models and combinatorics

N. M. Bogolyubovab, K. L. Malysheva

a St. Petersburg Department of the Steklov Mathematical Institute, Russian Academy of Sciences
b St. Petersburg National Research University of Information Technology, Mechanics, and Optics
References:
Abstract: Relations between quantum integrable models solvable by the quantum inverse scattering method and some aspects of enumerative combinatorics and partition theory are discussed. The main example is the Heisenberg XXZ spin chain in the limit cases of zero or infinite anisotropy. Form factors and some thermal correlation functions are calculated, and it is shown that the resulting form factors in a special q-parametrization are the generating functions for plane partitions and self-avoiding lattice paths. The asymptotic behaviour of the correlation functions is studied in the case of a large number of sites and a moderately large number of spin excitations. For sufficiently low temperature a relation is established between the correlation functions and the theory of matrix integrals.
Bibliography: 125 titles.
Keywords: correlation functions, Heisenberg magnet, four-vertex model, plane partitions, generating functions, symmetric functions.
Funding agency Grant number
Russian Science Foundation 14-11-00598
This work was supported by the Russian Science Foundation (grant no. 14-11-00598).
Received: 31.01.2015
Bibliographic databases:
Document Type: Article
UDC: 517.958+530.145
PACS: 02.10.Os; 03.65.-w
MSC: Primary 82B20, 37K60, 05E05; Secondary 82B30, 82B41, 82D40, 05C81
Language: English
Original paper language: Russian
Citation: N. M. Bogolyubov, K. L. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70:5 (2015), 789–856
Citation in format AMSBIB
\Bibitem{BogMal15}
\by N.~M.~Bogolyubov, K.~L.~Malyshev
\paper Integrable models and combinatorics
\jour Russian Math. Surveys
\yr 2015
\vol 70
\issue 5
\pages 789--856
\mathnet{http://mi.mathnet.ru/eng/rm9651}
\crossref{https://doi.org/10.1070/RM2015v070n05ABEH004964}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438554}
\zmath{https://zbmath.org/?q=an:06608772}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RuMaS..70..789B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000368253700001}
\elib{https://elibrary.ru/item.asp?id=24850535}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84955325517}
Linking options:
  • https://www.mathnet.ru/eng/rm9651
  • https://doi.org/10.1070/RM2015v070n05ABEH004964
  • https://www.mathnet.ru/eng/rm/v70/i5/p3
  • This publication is cited in the following 40 articles:
    1. Tianyu Liu, Xiongxin Yang, “Beyond windability: Approximability of the four-vertex model”, Theoretical Computer Science, 995 (2024), 114491  crossref
    2. N. M. Bogoliubov, C. L. Malyshev, “Scalar Product of the Five-Vertex Model and Complete Symmetric Polynomials”, J Math Sci, 2024  crossref
    3. N. M. Bogoliubov, C. L. Malyshev, “Semi-infinite Heisenberg XX0 chain and random walks”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 30, Zap. nauchn. sem. POMI, 532, POMI, SPb., 2024, 91–108  mathnet
    4. N. M. Bogolyubov, C. L. Malyshev, “Scalar product of the five-vertex model and complete symmetric polynomials”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 29, Zap. nauchn. sem. POMI, 520, POMI, SPb., 2023, 124–138  mathnet
    5. N. M. Bogolyubov, A. G. Pronko, “One-Point Function of the Four-Vertex Model”, J Math Sci, 275:3 (2023), 249  crossref
    6. N. M. Bogoliubov, C. L. Malyshev, “Cauchy–Binet Determinantal Identity and Enumeration of Plane Partitions in a High Box”, J Math Sci, 275:3 (2023), 239  crossref
    7. I. N. Burenev, “Five-Vertex Model and Lozenge Tilings of a Hexagon with a Dent”, J Math Sci, 275:3 (2023), 271  crossref
    8. Belov P., Reshetikhin N., “The Two-Point Correlation Function in the Six-Vertex Model”, J. Phys. A-Math. Theor., 55:15 (2022), 155001  crossref  mathscinet  isi
    9. N. M. Bogoliubov, C. L. Malyshev, “Heisenberg XX0 Chain and Random Walks on a Ring”, J Math Sci, 264:3 (2022), 232  crossref
    10. C Malyshev, N M Bogoliubov, “Spin correlation functions, Ramus-like identities, and enumeration of constrained lattice walks and plane partitions”, J. Phys. A: Math. Theor., 55:22 (2022), 225002  crossref
    11. I. N. Burenev, A. G. Pronko, “Quantum Hamiltonians Generated by the R-Matrix of the Five-Vertex Model”, J Math Sci, 264:3 (2022), 271  crossref
    12. Burenev I.N., Pronko A.G., “Determinant Formulas For the Five-Vertex Model”, J. Phys. A-Math. Theor., 54:5 (2021), 055008  crossref  mathscinet  isi
    13. N. M. Bogoliubov, C. L. Malyshev, “Cauchy–Binet determinantal identity and enumeration of plane partitions in a high box”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 28, Zap. nauchn. sem. POMI, 509, POMI, SPb., 2021, 25–38  mathnet
    14. N. M. Bogolyubov, A. G. Pronko, “One-point function of the four-vertex model”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 28, Zap. nauchn. sem. POMI, 509, POMI, SPb., 2021, 39–53  mathnet
    15. I. N. Burenev, “Five-vertex model and lozenge tilings of a hexagon with a dent”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 28, Zap. nauchn. sem. POMI, 509, POMI, SPb., 2021, 71–88  mathnet
    16. Nikolay Bogolyubov, Cyril Malyshev, “How to Draw a Correlation Function”, SIGMA, 17 (2021), 106, 35 pp.  mathnet  crossref
    17. Pozsgay B., Gombor T., Hutsalyuk A., Jiang Yu., Pristyak L., Vernier E., “Integrable Spin Chain With Hilbert Space Fragmentation and Solvable Real-Time Dynamics”, Phys. Rev. E, 104:4 (2021), 044106  crossref  mathscinet  isi
    18. M. D. Minin, A. G. Pronko, “Boundary Polarization of the Rational Six-Vertex Model on a Semi-Infinite Lattice”, J Math Sci, 257:4 (2021), 537  crossref
    19. N. M. Bogoliubov, “Enumerative Combinatorics of XX0 Heisenberg Chain”, J Math Sci, 257:4 (2021), 459  crossref
    20. N. Bogoliubov, C. Malyshev, “The Asymptotics of Plane Partitions with Fixed Volumes of Diagonal Parts”, J Math Sci, 257:4 (2021), 469  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1120
    Russian version PDF:335
    English version PDF:68
    References:102
    First page:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025