Loading [MathJax]/jax/output/SVG/config.js
Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2024, Volume 532, Pages 91–108 (Mi znsl7453)  

Semi-infinite Heisenberg XX0 chain and random walks

N. M. Bogoliubov, C. L. Malyshev

St.-Petersburg Department of V. A. Steklov Mathematical Institute, RAS Fontanka 27, St.-Petersburg, 191023, Russia
References:
Abstract: Heisenberg XX0 chain on semi-infinte interval enables modelling of random walks restricted by presence of impenetrable wall. The state vectors of the Hamiltonian are represented in terms of symplectic Schur functions. The transition amplitudes of the model are obtained in the integral form and are estimated in the case of unlimited increasing of the number of steps of random walks.
Key words and phrases: random walks, symplectic Schur functions.
Funding agency Grant number
Russian Science Foundation 23-11-00311
This work was supported by the Russian Science Foundation, grant #23-11-00311.
Received: 03.10.2024
Document Type: Article
UDC: 517
Language: English
Citation: N. M. Bogoliubov, C. L. Malyshev, “Semi-infinite Heisenberg XX0 chain and random walks”, Questions of quantum field theory and statistical physics. Part 30, Zap. Nauchn. Sem. POMI, 532, POMI, St. Petersburg, 2024, 91–108
Citation in format AMSBIB
\Bibitem{BogMal24}
\by N.~M.~Bogoliubov, C.~L.~Malyshev
\paper Semi-infinite Heisenberg XX0 chain and random walks
\inbook Questions of quantum field theory and statistical physics. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 2024
\vol 532
\pages 91--108
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7453}
Linking options:
  • https://www.mathnet.ru/eng/znsl7453
  • https://www.mathnet.ru/eng/znsl/v532/p91
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:44
    Full-text PDF :12
    References:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025