Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2012, Volume 67, Issue 6, Pages 1023–1068
DOI: https://doi.org/10.1070/RM2012v067n06ABEH004817
(Mi rm9498)
 

This article is cited in 34 scientific papers (total in 34 papers)

Conditions for Cm-approximability of functions by solutions of elliptic equations

M. Ya. Mazalova, P. V. Paramonovb, K. Yu. Fedorovskiyc

a Smolensk Branch of the Moscow Power Engineering Institute
b Moscow State University
c Bauman Moscow State Technical University
References:
Abstract: This paper is a survey of results obtained over the past 20–30 years in the qualitative theory of approximation of functions by holomorphic, harmonic, and polyanalytic functions (and, in particular, by corresponding polynomials) in the norms of Whitney-type spaces Cm on compact subsets of Euclidean spaces.
Bibliography: 120 titles.
Keywords: Cm-approximation by holomorphic, harmonic, and polyanalytic functions; Cm-analytic and Cm-harmonic capacity; s-dimensional Hausdorff content; Vitushkin localization operator; Nevanlinna domains; Dirichlet problem.
Received: 18.10.2012
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: Primary 30E10; Secondary 31A05, 31A30, 31A35, 30C20
Language: English
Original paper language: Russian
Citation: M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Conditions for Cm-approximability of functions by solutions of elliptic equations”, Russian Math. Surveys, 67:6 (2012), 1023–1068
Citation in format AMSBIB
\Bibitem{MazParFed12}
\by M.~Ya.~Mazalov, P.~V.~Paramonov, K.~Yu.~Fedorovskiy
\paper Conditions for $C^m$-approximability of functions by solutions of elliptic equations
\jour Russian Math. Surveys
\yr 2012
\vol 67
\issue 6
\pages 1023--1068
\mathnet{http://mi.mathnet.ru/eng/rm9498}
\crossref{https://doi.org/10.1070/RM2012v067n06ABEH004817}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3075077}
\zmath{https://zbmath.org/?q=an:1262.30027}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012RuMaS..67.1023M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000315950100002}
\elib{https://elibrary.ru/item.asp?id=20423471}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84875134339}
Linking options:
  • https://www.mathnet.ru/eng/rm9498
  • https://doi.org/10.1070/RM2012v067n06ABEH004817
  • https://www.mathnet.ru/eng/rm/v67/i6/p53
  • This publication is cited in the following 34 articles:
    1. Sorin G. Gal, Irene Sabadini, “Density of Complex and Quaternionic Polyanalytic Polynomials in Polyanalytic Fock Spaces”, Complex Anal. Oper. Theory, 18:1 (2024)  crossref
    2. Astamur Bagapsh, Konstantin Fedorovskiy, Maksim Mazalov, “On Dirichlet problem and uniform approximation by solutions of second-order elliptic systems in R2”, Journal of Mathematical Analysis and Applications, 531:1 (2024), 127896  crossref
    3. M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Criteria for Cm-approximability of functions by solutions of homogeneous second-order elliptic equations on compact subsets of RN and related capacities”, Russian Math. Surveys, 79:5 (2024), 847–917  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    4. P. V. Paramonov, K. Yu. Fedorovskiy, “Explicit form of fundamental solutions to certain elliptic equations and associated B- and C-capacities”, Sb. Math., 214:4 (2023), 550–566  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. K. Fedorovskiy, “Uniform Approximation by Polynomial Solutions of Elliptic Systems on Boundaries of Carathéodory Domains in R2”, Lobachevskii J Math, 44:4 (2023), 1299  crossref
    6. Gal S.G., Sabadini I., “Approximation By Convolution Polyanalytic Operators in the Complex and Quaternionic Compact Unit Balls”, Comput. Methods Funct. Theory, 2022  crossref  isi
    7. M. Ya. Mazalov, “Uniform approximation of functions by solutions of second order homogeneous strongly elliptic equations on compact sets in R2”, Izv. Math., 85:3 (2021), 421–456  mathnet  crossref  crossref  zmath  adsnasa  isi
    8. P. V. Paramonov, “Criteria for C1-approximability of functions on compact sets in RN, N, by solutions of second-order homogeneous elliptic equations”, Izv. Math., 85:3 (2021), 483–505  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    9. P. V. Paramonov, “Uniform approximation of functions by solutions of strongly elliptic equations of second order on compact subsets of \mathbb R^2”, Sb. Math., 212:12 (2021), 1730–1745  mathnet  crossref  crossref  zmath  adsnasa  isi
    10. Zoubeir H., Kabbaj S., “On the Representation and the Uniform Polynomial Approximation of Polyanalytic Functions of Gevrey Type on the Unit Disk”, Iran. J. Math. Sci. Inform., 16:2 (2021), 89–115  crossref  mathscinet  isi
    11. M. Ya. Mazalov, “Approximation by polyanalytic functions in Hölder spaces”, St. Petersburg Math. J., 33:5 (2022), 829–848  mathnet  crossref
    12. P. V. Paramonov, K. Yu. Fedorovskiy, “On C^m-reflection of harmonic functions and C^m-approximation by harmonic polynomials”, Sb. Math., 211:8 (2020), 1159–1170  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. M. Ya. Mazalov, “A criterion for uniform approximability of individual functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients”, Sb. Math., 211:9 (2020), 1267–1309  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. Belov Yu. Borichev A. Fedorovskiy K., “Nevanlinna Domains With Large Boundaries”, J. Funct. Anal., 277:8 (2019), 2617–2643  crossref  mathscinet  isi
    15. Mazalov M.Ya., “Bianalytic Capacities and Calderon Commutators”, Anal. Math. Phys., 9:3 (2019), 1099–1113  crossref  mathscinet  isi
    16. Paramonov P.V., Tolsa X., “on C-1-Approximability of Functions By Solutions of Second Order Elliptic Equations on Plane Compact Sets and C-Analytic Capacity”, Anal. Math. Phys., 9:3 (2019), 1133–1161  crossref  mathscinet  isi
    17. Yu. S. Belov, K. Yu. Fedorovskiy, “Model spaces containing univalent functions”, Russian Math. Surveys, 73:1 (2018), 172–174  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    18. Fedorovskiy K.Yu., “Two Problems on Approximation By Solutions of Elliptic Systems on Compact Sets in the Plane”, Complex Var. Elliptic Equ., 63:7-8, SI (2018), 961–975  crossref  mathscinet  zmath  isi  scopus
    19. M. Ya. Mazalov, “On Bianalytic Capacities”, Math. Notes, 103:4 (2018), 672–677  mathnet  crossref  crossref  mathscinet  isi  elib
    20. P. V. Paramonov, “Criteria for the individual C^m-approximability of functions on compact subsets of \mathbb R^N by solutions of second-order homogeneous elliptic equations”, Sb. Math., 209:6 (2018), 857–870  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1100
    Russian version PDF:306
    English version PDF:52
    References:138
    First page:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025