Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2012, Volume 67, Issue 4, Pages 599–684
DOI: https://doi.org/10.1070/RM2012v067n04ABEH004803
(Mi rm9488)
 

This article is cited in 26 scientific papers (total in 26 papers)

Methods of geometric function theory in classical and modern problems for polynomials

V. N. Dubinin

Far Eastern Federal University, Vladivostok
References:
Abstract: This paper gives a survey of classical and modern theorems on polynomials, proved using methods of geometric function theory. Most of the paper is devoted to results of the author and his students, established by applying majorization principles for holomorphic functions, the theory of univalent functions, the theory of capacities, and symmetrization. Auxiliary results and the proofs of some of the theorems are presented.
Bibliography: 124 titles.
Keywords: majorization principles, Schwarz's lemma, capacities, univalent functions, symmetrization, inequalities, polynomials, critical points, critical values, rational functions.
Received: 12.09.2011
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: Primary 30C10; Secondary 30C50, 30C85
Language: English
Original paper language: Russian
Citation: V. N. Dubinin, “Methods of geometric function theory in classical and modern problems for polynomials”, Russian Math. Surveys, 67:4 (2012), 599–684
Citation in format AMSBIB
\Bibitem{Dub12}
\by V.~N.~Dubinin
\paper Methods of geometric function theory in classical and modern problems for polynomials
\jour Russian Math. Surveys
\yr 2012
\vol 67
\issue 4
\pages 599--684
\mathnet{http://mi.mathnet.ru/eng/rm9488}
\crossref{https://doi.org/10.1070/RM2012v067n04ABEH004803}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3013845}
\zmath{https://zbmath.org/?q=an:1267.30012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000310789000001}
\elib{https://elibrary.ru/item.asp?id=20423456}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84868642061}
Linking options:
  • https://www.mathnet.ru/eng/rm9488
  • https://doi.org/10.1070/RM2012v067n04ABEH004803
  • https://www.mathnet.ru/eng/rm/v67/i4/p3
  • This publication is cited in the following 26 articles:
    1. Natalia N. Rybakova, “Chebyshev polynomials with zeros outside the open arc segment”, Zhurn. SFU. Ser. Matem. i fiz., 17:1 (2024), 18–26  mathnet
    2. D. Dmitrishin, D. Gray, A. Stokolos, I. Tarasenko, “Extremal problems for typically real odd polynomials”, Acta Math. Hungar., 173:1 (2024), 1  crossref
    3. A. Mir, T. Fayaz, “Inequalities for a Rational Function with Prescribed Poles”, Sib Math J, 65:4 (2024), 899  crossref
    4. F. G. Avkhadiev, I. R. Kayumov, S. R. Nasyrov, “Extremal problems in geometric function theory”, Russian Math. Surveys, 78:2 (2023), 211–271  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. E. G. Kompaneets, V. V. Starkov, “On the Smirnov-Type Inequality for Polynomials”, Math. Notes, 111:3 (2022), 388–397  mathnet  mathnet  crossref  scopus
    6. A. Mir, S. Hans, “Inequalities Concerning Rational Functions in the Complex Domain”, Sib Math J, 63:5 (2022), 1012  crossref
    7. V. N. Dubinin, “Sharp Inequalities for Rational Functions on a Circle”, Math. Notes, 110:1 (2021), 41–47  mathnet  crossref  crossref  isi  elib
    8. V. N. Dubinin, “Some remarks on rotation theorems for complex polynomials”, Sib. elektron. matem. izv., 18:1 (2021), 369–376  mathnet  crossref
    9. Milovanovic V G., Mir A., Ahmad A., “Estimates For the Maximal Modulus of Rational Functions With Prescribed Poles”, Filomat, 35:5 (2021), 1511–1517  crossref  mathscinet  isi  scopus
    10. E. G. Ganenkova, V. V. Starkov, “The Möbius Transformation and Smirnov's Inequality for Polynomials”, Math. Notes, 105:2 (2019), 216–226  mathnet  crossref  crossref  mathscinet  isi  elib
    11. Ganenkova E.G., Starkov V.V., “Variations on a Theme of the Marden and Smirnov Operators, Differential Inequalities For Polynomials”, J. Math. Anal. Appl., 476:2 (2019), 696–714  crossref  mathscinet  zmath  isi  scopus
    12. V. N. Dubinin, “On the Dual Mean-Value Conjecture for Complex Polynomials”, Math. Notes, 106:1 (2019), 133–135  mathnet  crossref  crossref  mathscinet  isi  elib
    13. V. N. Dubinin, “On holomorphic self-mappings of the unit disk”, Sib. elektron. matem. izv., 16 (2019), 1633–1639  mathnet  crossref
    14. Dmitrishin D., Smorodin A., Stokolos A., “on a Family of Extremal Polynomials”, C. R. Math., 357:7 (2019), 591–596  crossref  mathscinet  isi  scopus
    15. Kompaneets E., Starkov V., “Generalization of the Smirnov Operator and Differential Inequalities For Polynomials”, Lobachevskii J. Math., 40:12 (2019), 2043–2051  crossref  mathscinet  isi
    16. Hinkkanen A., Kayumov I.R., Khammatova D.M., “Dual Smale'S Mean Value Conjecture”, Proc. Amer. Math. Soc., 147:12 (2019), 5227–5237  crossref  mathscinet  isi
    17. Yu. V. Dymchenko, V. A. Shlyk, “On a Problem of Dubinin for the Capacity of a Condenser with a Finite Number of Plates”, Math. Notes, 103:6 (2018), 901–910  mathnet  crossref  crossref  mathscinet  isi  elib
    18. Dubinin V.N., “Some Unsolved Problems About Condenser Capacities on the Plane”, Complex Analysis and Dynamical Systems: New Trends and Open Problems, Trends in Mathematics, eds. Agranovsky M., Golberg A., Jacobzon F., Shoikhet D., Zalcman L., Birkhauser Verlag Ag, 2018, 81–92  crossref  mathscinet  isi  scopus
    19. S. Kalmykov, B. Nagy, V. Totik, “Bernstein- and Markov-type inequalities for rational functions”, Acta Math., 219:1 (2017), 21–63  crossref  mathscinet  zmath  isi  scopus
    20. P. A. Pugach, V. A. Shlyk, “Weighted modules and capacities on a Riemann surface”, J. Math. Sci. (N. Y.), 234:5 (2018), 701–736  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1811
    Russian version PDF:512
    English version PDF:46
    References:159
    First page:96
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025