Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2009, Volume 64, Issue 4, Pages 701–744
DOI: https://doi.org/10.1070/RM2009v064n04ABEH004631
(Mi rm9297)
 

This article is cited in 19 scientific papers (total in 19 papers)

On the definition of ‘chaos’

A. Yu. Kolesova, N. Kh. Rozovb

a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University
References:
Abstract: A new definition of a chaotic invariant set is given for a continuous semiflow in a metric space. It generalizes the well-known definition due to Devaney and allows one to take into account a special feature occurring in the non-compact infinite-dimensional case: so-called turbulent chaos. The paper consists of two sections. The first contains several well-known facts from chaotic dynamics, together with new definitions and results. The second presents a concrete example demonstrating that our definition of chaos is meaningful. Namely, an infinite-dimensional system of ordinary differential equations is investigated having an attractor that is chaotic in the sense of the new definition but not in the sense of Devaney or Knudsen.
Bibliography: 65 titles.
Keywords: attractor, chaos, topological transitivity, mixing, invariant measure, hyperbolicity.
Received: 07.05.2009
Bibliographic databases:
Document Type: Article
UDC: 517.957
MSC: Primary 37D45; Secondary 37A25, 34D45, 37A35, 37D10
Language: English
Original paper language: Russian
Citation: A. Yu. Kolesov, N. Kh. Rozov, “On the definition of ‘chaos’”, Russian Math. Surveys, 64:4 (2009), 701–744
Citation in format AMSBIB
\Bibitem{KolRoz09}
\by A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper On the definition of `chaos'
\jour Russian Math. Surveys
\yr 2009
\vol 64
\issue 4
\pages 701--744
\mathnet{http://mi.mathnet.ru/eng/rm9297}
\crossref{https://doi.org/10.1070/RM2009v064n04ABEH004631}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2583574}
\zmath{https://zbmath.org/?q=an:05665290}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009RuMaS..64..701K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275492400004}
\elib{https://elibrary.ru/item.asp?id=20425307}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77951191412}
Linking options:
  • https://www.mathnet.ru/eng/rm9297
  • https://doi.org/10.1070/RM2009v064n04ABEH004631
  • https://www.mathnet.ru/eng/rm/v64/i4/p125
  • This publication is cited in the following 19 articles:
    1. Nina I. Zhukova, “Sensitivity and Chaoticity of Some Classes of Semigroup Actions”, Regul. Chaotic Dyn., 29:1 (2024), 174–189  mathnet  crossref
    2. Tom Eivind Glover, Ruben Jahren, Francesco Martinuzzi, Pedro Gonçalves Lind, Stefano Nichele, “A sensitivity analysis of cellular automata and heterogeneous topology networks: partially-local cellular automata and homogeneous homogeneous random boolean networks”, International Journal of Parallel, Emergent and Distributed Systems, 2024, 1  crossref
    3. Vladimir Anashin, “Free Choice in Quantum Theory: A p-adic View”, Entropy, 25:5 (2023), 830  crossref
    4. S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Diffusion chaos and its invariant numerical characteristics”, Theoret. and Math. Phys., 203:1 (2020), 443–456  mathnet  crossref  crossref  adsnasa  isi  elib
    5. A. S. Sheludko, “Convergence analysis of the guaranteed parameter estimation algorithm for models of one-dimensional chaotic systems”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 13:2 (2020), 144–150  mathnet  crossref
    6. Zheng J., Hu H., Ming H., Liu X., “Theoretical Design and Circuit Implementation of Novel Digital Chaotic Systems Via Hybrid Control”, Chaos Solitons Fractals, 138 (2020), 109863  crossref  mathscinet  isi
    7. Hirsch M.W., “on the Nonchaotic Nature of Monotone Dynamical Systems”, Eur. J. Pure Appl Math., 12:3 (2019), 680–688  crossref  mathscinet  isi
    8. Zheng J., Hu H., Xia X., “Applications of Symbolic Dynamics in Counteracting the Dynamical Degradation of Digital Chaos”, Nonlinear Dyn., 94:2 (2018), 1535–1546  crossref  isi  scopus
    9. S. D. Glyzin, “Dimensional Characteristics of Diffusion Chaos”, Model. anal. inf. sist., 20:1 (2015), 30  crossref
    10. Christian Kuehn, Applied Mathematical Sciences, 191, Multiple Time Scale Dynamics, 2015, 431  crossref
    11. V. E. Kim, “Dynamics of linear operators connected with su(1,1) algebra”, Ufa Math. J., 6:1 (2014), 66–70  mathnet  crossref  elib
    12. S. D. Glyzin, “Razmernostnye kharakteristiki diffuzionnogo khaosa”, Model. i analiz inform. sistem, 20:1 (2013), 30–51  mathnet
    13. S. D. Glyzin, “Dimensional characteristics of diffusion chaos”, Aut. Control Comp. Sci., 47:7 (2013), 452–469  crossref  mathscinet  scopus
    14. Schneider F.M., Kerkhoff S., Behrisch M., Siegmund S., “Locally Compact Groups Admitting Faithful Strongly Chaotic Actions on Hausdorff Spaces”, Int. J. Bifurcation Chaos, 23:9 (2013), 1350158  crossref  mathscinet  zmath  isi  scopus
    15. Schneider F.M., Kerkhoff S., Behrisch M., Siegmund S., “Chaotic Actions of Topological Semigroups”, Semigr. Forum, 87:3 (2013), 590–598  crossref  mathscinet  zmath  isi  scopus
    16. Stewart I., “Sources of uncertainty in deterministic dynamics: an informal overview”, Phil. Trans. R. Soc. A, 369:1956 (2011), 4705–4729  crossref  mathscinet  zmath  adsnasa  isi  scopus
    17. A. Yu. Perevaryukha, “Perekhod k ustoichivomu khaoticheskomu rezhimu v novoi modeli dinamiki populyatsii v rezultate edinstvennoi bifurkatsii”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2010, no. 2, 117–126  mathnet
    18. A. Yu. Loskutov, “Fascination of chaos”, Phys. Usp., 53:12 (2010), 1257–1280  mathnet  crossref  crossref  adsnasa  isi  elib
    19. S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Finite-dimensional models of diffusion chaos”, Comput. Math. Math. Phys., 50:5 (2010), 816–830  mathnet  crossref  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1699
    Russian version PDF:549
    English version PDF:42
    References:154
    First page:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025