Abstract:
Spectral boundary-value problems with discrete spectrum are considered for second-order strongly elliptic systems of partial differential equations in a domain Ω⊂Rn whose boundary Γ is compact and may be C∞, C1,1, or Lipschitz. The principal part of the system is assumed to be Hermitian and to satisfy an additional condition ensuring that the Neumann problem is coercive. The spectral parameter occurs either in the system (then Ω is assumed to be bounded) or in a first-order boundary condition. Also considered are transmission problems in Rn∖Γ with spectral parameter in the transmission condition on Γ. The corresponding operators in L2(Ω) or L2(Γ) are self-adjoint operators or weak perturbations of self-adjoint ones. Under some additional conditions a discussion is given of the smoothness, completeness, and basis properties of eigenfunctions or root functions in the Sobolev L2-spaces Ht(Ω) or Ht(Γ) of non-zero order t as well as of localization and the asymptotic behaviour of the eigenvalues. The case of Coulomb singularities in the zero-order term of the system is also covered.
Citation:
M. S. Agranovich, “Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains”, Russian Math. Surveys, 57:5 (2002), 847–920
\Bibitem{Agr02}
\by M.~S.~Agranovich
\paper Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains
\jour Russian Math. Surveys
\yr 2002
\vol 57
\issue 5
\pages 847--920
\mathnet{http://mi.mathnet.ru/eng/rm552}
\crossref{https://doi.org/10.1070/RM2002v057n05ABEH000552}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992082}
\zmath{https://zbmath.org/?q=an:1057.35019}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2002RuMaS..57..847A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180936400001}
\elib{https://elibrary.ru/item.asp?id=14128847}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036771185}
Linking options:
https://www.mathnet.ru/eng/rm552
https://doi.org/10.1070/RM2002v057n05ABEH000552
https://www.mathnet.ru/eng/rm/v57/i5/p3
This publication is cited in the following 58 articles:
D. O. Tsvetkov, “On One Boundary-Value Problem Related to Internal Flotation”, J Math Sci, 2025
D. O. Tsvetkov, “Ob odnoi kraevoi zadache, svyazannoi s vnutrennei flotatsiei”, SMFN, 70, no. 3, Rossiiskii universitet druzhby narodov, M., 2024, 498–515
N. D. Kopachevsky, E. V. Syomkina, “On Small Motions of Hydraulic Systems Containing Viscoelastic Fluid”, J Math Sci, 267:6 (2022), 716
N. D. Kopachevsky, “Problems on Small Motions of Systems of Two Viscoelastic Fluids in Fixed Vessels”, J Math Sci, 263:6 (2022), 860
Tsvetkov D.O., “Oscillations of a Liquid Partially Covered With Ice”, Lobachevskii J. Math., 42:5, SI (2021), 1078–1093
N. D. Kopachevsky, V. I. Voytitsky, Z. Z. Sitshaeva, “On Oscillations of Two Connected Pendulums Containing Cavities Partially Filled by Incompressible Fluids”, J Math Sci, 259:6 (2021), 845
D. O. Tsvetkov, “Crumbled ice on the surface of a multilayered fluid”, Sib. elektron. matem. izv., 17 (2020), 777–801
Gorgisheli S., Mrevlishvili M., Natroshvili D., “Boundary-Transmission Problems of the Theory of Acoustic Waves For Piecewise Inhomogeneous Anisotropic Multi-Component Lipschitz Domains”, Trans. A Razmadze Math. Inst., 174:3 (2020), 303–324
N. D. Kopachevskii, A. R. Yakubova, “On Some Problems Generated by a Sesquilinear Form”, J Math Sci, 250:4 (2020), 622
K. A. Radomirskaya, “Spectral and Initial-Boundary Conjugation Problems”, J Math Sci, 250:4 (2020), 660
D. O. Tsvetkov, “Ob odnoi nachalno-kraevoi zadache, voznikayuschei v dinamike sistemy stratifitsirovannykh zhidkostei”, Chelyab. fiz.-matem. zhurn., 4:2 (2019), 179–198
N. D. Kopachevskii, E. V. Semkina, “O malykh dvizheniyakh gidrosistem, soderzhaschikh vyazkoupruguyu zhidkost”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g. Chast 3, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 172, VINITI RAN, M., 2019, 48–90
Ammann B., Grosse N., Nistor V., “the Strong Legendre Condition and the Well-Posedness of Mixed Robin Problems on Manifolds With Bounded Geometry”, Rev. Roum. Math. Pures Appl., 64:2-3 (2019), 85–111
Kopachevsky N.D., Voytitsky V.I., Sitshayeva Z.Z., “On Two Hydromechanical Problems Inspired By Works of S. Krein”, Differential Equations, Mathematical Physics, and Applications: Selim Grigorievich Krein Centennial, Contemporary Mathematics, 734, eds. Kuchment P., Semenov E., Amer Mathematical Soc, 2019, 219–238
Lipachev E.K., “Boundary-Value Problems For the Helmholtz Equation For a Half-Plane With a Lipschitz Inclusion”, Lobachevskii J. Math., 39:5 (2018), 699–706
Rozenblum G., Tashchiyan G., “Eigenvalue Asymptotics For Potential Type Operators on Lipschitz Surfaces of Codimension Greater Than 1”, Opusc. Math., 38:5, SI (2018), 733–758
N. D. Kopachevskii, “K probleme malykh dvizhenii sistemy iz dvukh vyazkouprugikh zhidkostei v nepodvizhnom sosude”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 64, no. 3, Rossiiskii universitet druzhby narodov, M., 2018, 547–572
D. O. Tsvetkov, “Malye dvizheniya sistemy idealnykh stratifitsirovannykh zhidkostei, polnostyu pokrytoi kroshenym ldom”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 26 (2018), 105–120
O. A. Andronova, V. I. Voytitskiy, “On spectral properties of one boundary value problem with a surface energy dissipation”, Ufa Math. J., 9:2 (2017), 3–16
N. D. Kopachevskii, A. R. Yakubova, “O nekotorykh zadachakh, porozhdennykh polutoralineinoi formoi”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 63, no. 2, Rossiiskii universitet druzhby narodov, M., 2017, 278–315