Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1970, Volume 25, Issue 1, Pages 57–117
DOI: https://doi.org/10.1070/RM1970v025n01ABEH001255
(Mi rm5294)
 

This article is cited in 13 scientific papers (total in 13 papers)

The general theory of relaxation processes for convex functionals

Yu. I. Lyubich, G. D. Maistrovskii
References:
Abstract: This article sets out a theory of the convergence of minimization processes convex functionals that reduce the value of the functional at each step. A geometrical language, independent of the algorithmic structure, is used to describe the processes: the language of relaxation angles and factors. Convergence conditions are derived and the rate of convergence and stability of the process are studied in this terminology. Translation from the language of concrete algorithms to the geometrical terminology is not difficult, and thanks to this the theory has a wide area of applications: gradient and operator-gradient processes, processes of Newtonian type, coordinate relaxation, Jacobi processes and relaxation for the Rayleigh functional.
Received: 29.06.1969
Bibliographic databases:
Document Type: Article
UDC: 517.948+519.9
MSC: 52A41, 41A25
Language: English
Original paper language: Russian
Citation: Yu. I. Lyubich, G. D. Maistrovskii, “The general theory of relaxation processes for convex functionals”, Russian Math. Surveys, 25:1 (1970), 57–117
Citation in format AMSBIB
\Bibitem{LyuMai70}
\by Yu.~I.~Lyubich, G.~D.~Maistrovskii
\paper The general theory of relaxation processes for convex functionals
\jour Russian Math. Surveys
\yr 1970
\vol 25
\issue 1
\pages 57--117
\mathnet{http://mi.mathnet.ru/eng/rm5294}
\crossref{https://doi.org/10.1070/RM1970v025n01ABEH001255}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=266016}
\zmath{https://zbmath.org/?q=an:0202.42202|0207.45001}
Linking options:
  • https://www.mathnet.ru/eng/rm5294
  • https://doi.org/10.1070/RM1970v025n01ABEH001255
  • https://www.mathnet.ru/eng/rm/v25/i1/p57
  • This publication is cited in the following 13 articles:
    1. Mykola Ostroverkhov, Silvestrov Anton, Galina Kryvoboka, 2021 IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek), 2021, 181  crossref
    2. Dominique Azé, Jean-Noël Corvellec, “Nonlinear Error Bounds via a Change of Function”, J Optim Theory Appl, 172:1 (2017), 9  crossref
    3. Simeon Reich, Alexander J. Zaslavski, Developments in Mathematics, 34, Genericity in Nonlinear Analysis, 2014, 181  crossref
    4. Simeon Reich, Alexander J. Zaslavski, Nonlinear Analysis and Applications: To V. Lakshmikantham on his 80th Birthday, 2003, 851  crossref
    5. I. Ya. Zabotin, “On the stability of algorithms for the unconditional minimization of pseudoconvex functions”, Russian Math. (Iz. VUZ), 44:12 (2000), 31–46  mathnet  mathscinet  zmath  elib
    6. Bunich, AL, “Synthesis of discrete systems: Certain nonstandard problems”, Automation and Remote Control, 61:6 (2000), 994  mathnet  mathscinet  zmath  isi
    7. Eberhard Zeidler, Nonlinear Functional Analysis and its Applications, 1985, 244  crossref
    8. V. V. Ivanov, V. A. Lyudvichenko, “A method for sequential absolute minimization in mathematical programming problems”, Cybern Syst Anal, 13:2 (1977), 143  crossref
    9. R. A. Polyak, M. E. Primak, “Method of control sequences for the solution of equilibrium problems. I”, Cybern Syst Anal, 13:2 (1977), 241  crossref
    10. E. A. Nurminskii, “Convergence conditions for nonlinear programming algorithms”, Cybern Syst Anal, 8:6 (1974), 959  crossref
    11. U. Eckhardt, Numerische Methoden bei Optimierungsaufgaben, 1973, 29  crossref
    12. Pure and Applied Mathematics, 57, 1973, 273  crossref
    13. L. V. Kantorovich, “Methods of optimization and mathematical models in economics”, Russian Math. Surveys, 25:5 (1970), 105–107  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:483
    Russian version PDF:281
    English version PDF:24
    References:53
    First page:1
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025