Abstract:
This article attempts to give a linearized form of the basic theorems of complex analysis (the Oka–Cartan theory). With this aim we study simultaneously: a) the isomorphism problem for spaces of holomorphic functions H(M) and H(Dn), n=dimCM; b) the existence of a linear separation of singularities for the space H(U), where
U=U0∩U1, and Uk (k=0,1) are holomorphically convex domains in a complex manifold M, and, in a more general setting, the splitting of the Čech complex of a coherent sheaf over a holomorphically convex domain V; c) the existence of a linear extension for holomorphic functions on a submanifold M⊂Ω, and more generally, the splitting of a global resolution of a coherent sheaf. In several cases (for strictly pseudoconvex domains) these questions can be answered affirmatively. The proofs are based on the theory of Hilbert scales and bounds for solutions of the ¯∂-problem in weighted L2-spaces. Counterexamples show that the same questions may also have negative answers.
This publication is cited in the following 26 articles:
Joseph Chuang, Julian Holstein, Andrey Lazarev, “Maurer–Cartan Moduli and Theorems of Riemann–Hilbert Type”, Appl Categor Struct, 29:4 (2021), 685
Andreas Hartmann, Marcu-Antone Orsoni, “Separation of singularities for the Bergman space and application to control theory”, Journal de Mathématiques Pures et Appliquées, 150 (2021), 181
A. K. Dronov, V. M. Kaplitskii, “On the existence of a basis in a complemented subspace of a nuclear Köthe space from class $(d_1)$”, Sb. Math., 209:10 (2018), 1463–1481
D. A. Polyakova, “Solvability of the inhomogeneous Cauchy–Riemann equation in projective weighted spaces”, Siberian Math. J., 58:1 (2017), 142–152
A. K. Dronov, “O suschestvovanii bazisa v dopolnyaemom podprostranstve yadernogo prostranstva Këte iz klassa $(d_2)$”, Vladikavk. matem. zhurn., 18:1 (2016), 9–20
D. A. Polyakova, “On solvability of inhomogeneous Cauchy–Riemann equation in functional spaces with a system of uniform estimates”, Russian Math. (Iz. VUZ), 59:10 (2015), 65–69
Lev Aizenberg, “Separation of singularities for holomorphic functions”, Anal.Math.Phys., 4:1-2 (2014), 13
Domanski P., “Notes on Real Analytic Functions and Classical Operators”, Topics in Complex Analysis and Operator Theory, Contemporary Mathematics, 561, eds. Blasco O., Bonet J., Calabuig J., Jornet D., Amer Mathematical Soc, 2012, 3–47
Domanski P., “Real Analytic Parameter Dependence of Solutions of Differential Equations”, Rev. Mat. Iberoam., 26:1 (2010), 175–238
N. T. Akhtyamov, I. Kh. Musin, “O suschestvovanii bazisa v vesovom prostranstve tselykh funktsii”, Ufimsk. matem. zhurn., 1:1 (2009), 3–15
Tosun Terzioǧlu, Murat Yurdakul, Vyacheslav Zahariuta, “On some normability conditions”, Math Nachr, 278:14 (2005), 1714
V. P. Khavin, “Separation of singularities of analytic functions with preservation of boundedness”, St. Petersburg Math. J., 16:1 (2005), 259–283
A. Aytuna, J. Krone, T. Terzioĝlu, “Imbedding of power series spaces and spaces of analytic functions”, manuscripta math, 67:1 (1990), 125
A. Aytuna, J. Krone, T. Terzioǧlu, “Complemented infinite type power series subspaces of nuclear Fréchet spaces”, Math Ann, 283:2 (1989), 193
Aydin Aytuna, Advances in the Theory of Fréchet Spaces, 1989, 115
T. Terzíoğlu, Advances in the Theory of Fréchet Spaces, 1989, 305
J. Krone, Advances in the Theory of Fréchet Spaces, 1989, 297
A. Aytuna, “On stein manifolds M for whichO(M) is isomorphic toO(?n) as Fr�chet spaces”, Manuscripta Math, 62:3 (1988), 297
F. Haslinger, M. Smejkal, Lecture Notes in Mathematics, 1275, Complex Analysis I, 1987, 168
Leif Abrahamsson, “Holomorphic mappings with prescribed Taylor expansions”, Ark Mat, 22:1-2 (1984), 121