Processing math: 100%
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1975, Volume 30, Issue 2, Pages 1–58
DOI: https://doi.org/10.1070/RM1975v030n02ABEH001406
(Mi rm3983)
 

This article is cited in 121 scientific papers (total in 122 papers)

On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as t of solutions of non-stationary problems

B. R. Vainberg
References:
Abstract: In this paper we study the Cauchy problem and boundary-value problem of general form in the exterior of a compact set for hyperbolic operators L, whose coefficients depend only on x and are constant near infinity. Assuming that the wave fronts of the Green's matrix for L go off to infinity as t, we determine the asymptotic behaviour of solutions as t. For the corresponding stationary problem we obtain the short-wave asymptotic behaviour of solutions for real and complex frequencies.
Received: 18.03.1974
Bibliographic databases:
Document Type: Article
UDC: 517.4
Language: English
Original paper language: Russian
Citation: B. R. Vainberg, “On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as t of solutions of non-stationary problems”, Russian Math. Surveys, 30:2 (1975), 1–58
Citation in format AMSBIB
\Bibitem{Vai75}
\by B.~R.~Vainberg
\paper On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as $t\to\infty$ of solutions of non-stationary problems
\jour Russian Math. Surveys
\yr 1975
\vol 30
\issue 2
\pages 1--58
\mathnet{http://mi.mathnet.ru/eng/rm3983}
\crossref{https://doi.org/10.1070/RM1975v030n02ABEH001406}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=415085}
\zmath{https://zbmath.org/?q=an:0308.35011|0318.35006}
Linking options:
  • https://www.mathnet.ru/eng/rm3983
  • https://doi.org/10.1070/RM1975v030n02ABEH001406
  • https://www.mathnet.ru/eng/rm/v30/i2/p3
  • This publication is cited in the following 122 articles:
    1. T. J. Christiansen, K. Datchev, M. Yang, “From resolvent expansions at zero to long time wave expansions”, Communications in Partial Differential Equations, 2025, 1  crossref
    2. Anjali Jangid, Pooja Devi, Harsh Soni, Aniruddha Chakraborty, “Soliton Solutions for a Quantum Particle in One-dimensional Boxes”, Int J Theor Phys, 63:2 (2024)  crossref
    3. Wei Dai, “The global behaviors for defocusing wave equations in two dimensional exterior region”, manuscripta math., 174:1-2 (2024), 59  crossref
    4. M. Bernkopf, T. Chaumont-Frelet, J. Melenk, “Wavenumber-explicit stability and convergence analysis of ℎ𝑝 finite element discretizations of Helmholtz problems in piecewise smooth media”, Math. Comp., 2024  crossref
    5. A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, M. Rouleux, “Lagrangian manifolds and the construction of asymptotics for (pseudo)differential equations with localized right-hand sides”, Theoret. and Math. Phys., 214:1 (2023), 1–23  mathnet  crossref  crossref  mathscinet  adsnasa
    6. A. Yu. Anikin, A. I. Klevin, “Asymptotics of the Helmholtz equation solutions in a two-layer medium with a localized right-hand side”, Theoret. and Math. Phys., 216:1 (2023), 1036–1054  mathnet  crossref  crossref  mathscinet  adsnasa
    7. J. Galkowski, D. Lafontaine, E. A. Spence, J. Wunsch, “Decompositions of High-Frequency Helmholtz Solutions via Functional Calculus, and Application to the Finite Element Method”, SIAM J. Math. Anal., 55:4 (2023), 3903  crossref
    8. Donald L. Brown, Dietmar Gallistl, “Multiscale Sub-grid Correction Method for Time-Harmonic High-Frequency Elastodynamics with Wave Number Explicit Bounds”, Computational Methods in Applied Mathematics, 23:1 (2023), 65  crossref
    9. Jeffrey Galkowski, David Lafontaine, Euan Spence, “Perfectly-Matched-Layer Truncation is Exponentially Accurate at High Frequency”, SIAM J. Math. Anal., 55:4 (2023), 3344  crossref
    10. Théophile Chaumont-Frelet, Andrea Moiola, Euan A. Spence, “Explicit bounds for the high-frequency time-harmonic Maxwell equations in heterogeneous media”, Journal de Mathématiques Pures et Appliquées, 179 (2023), 183  crossref
    11. Ryo Ikehata, “A note on local energy decay results for wave equations with a potential”, ASY, 134:1-2 (2023), 281  crossref
    12. Long Yan, Lili Sun, “General stability and exponential growth of nonlinear variable coefficient wave equation with logarithmic source and memory term”, Math Methods in App Sciences, 46:1 (2023), 879  crossref
    13. E. A. Spence, J. Wunsch, “Wavenumber-Explicit Parametric Holomorphy of Helmholtz Solutions in the Context of Uncertainty Quantification”, SIAM/ASA J. Uncertainty Quantification, 11:2 (2023), 567  crossref
    14. Ryo Ikehata, “L2-blowup estimates of the wave equation and its application to local energy decay”, J. Hyper. Differential Equations, 20:01 (2023), 259  crossref
    15. Boussaid N. Comech A., “Limiting Absorption Principle and Virtual Levels of Operators in Banach Spaces”, Ann. Math. Que., 46:1 (2022), 161–180  crossref  isi
    16. L. Koralov, S. Molchanov, B. Vainberg, “The radius of a polymer at a near-critical temperature”, Applicable Analysis, 101:8 (2022), 2797  crossref
    17. D. Lafontaine, E.A. Spence, J. Wunsch, “Wavenumber-explicit convergence of the hp-FEM for the full-space heterogeneous Helmholtz equation with smooth coefficients”, Computers & Mathematics with Applications, 113 (2022), 59  crossref
    18. J. Galkowski, P. Marchand, E. A. Spence, “High-Frequency Estimates on Boundary Integral Operators for the Helmholtz Exterior Neumann Problem”, Integr. Equ. Oper. Theory, 94:4 (2022)  crossref
    19. D. Lafontaine, E. A. Spence, J. Wunsch, “A sharp relative-error bound for the Helmholtz h-FEM at high frequency”, Numer. Math., 150:1 (2022), 137  crossref
    20. Rajan Puri, Boris Vainberg, “On the critical value of the coupling constant in exterior elliptic problems”, Applicable Analysis, 101:1 (2022), 108  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1030
    Russian version PDF:355
    English version PDF:53
    References:153
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025