Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2001, Volume 56, Issue 2, Pages 365–401
DOI: https://doi.org/10.1070/RM2001v056n02ABEH000384
(Mi rm384)
 

This article is cited in 10 scientific papers (total in 10 papers)

Topology of plane arrangements and their complements

V. A. Vassiliev

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: This paper is a glossary of notions and methods related to the topological theory of affine plane arrangements, including braid groups, configuration spaces, order complexes, stratified Morse theory, simplicial resolutions, complexes of graphs, Orlik–Solomon rings, Salvetti complexes, matroids, Spanier–Whitehead duality, twisted homology groups, monodromy theory, and multidimensional hypergeometric functions. The emphasis is upon making the presentation as geometric as possible. Applications and analogies in differential topology are outlined, and some recent results of the theory are presented.
Received: 06.03.2001
Bibliographic databases:
Document Type: Article
UDC: 514.14
MSC: Primary 52C35, 57N65; Secondary 32S22, 05B35, 33C70, 14M15, 55R80, 55P25, 58K10, 2
Language: English
Original paper language: Russian
Citation: V. A. Vassiliev, “Topology of plane arrangements and their complements”, Russian Math. Surveys, 56:2 (2001), 365–401
Citation in format AMSBIB
\Bibitem{Vas01}
\by V.~A.~Vassiliev
\paper Topology of plane arrangements and their complements
\jour Russian Math. Surveys
\yr 2001
\vol 56
\issue 2
\pages 365--401
\mathnet{http://mi.mathnet.ru/eng/rm384}
\crossref{https://doi.org/10.1070/RM2001v056n02ABEH000384}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1859709}
\zmath{https://zbmath.org/?q=an:1002.55015}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2001RuMaS..56..365V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000171215300003}
\elib{https://elibrary.ru/item.asp?id=13385318}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035602346}
Linking options:
  • https://www.mathnet.ru/eng/rm384
  • https://doi.org/10.1070/RM2001v056n02ABEH000384
  • https://www.mathnet.ru/eng/rm/v56/i2/p167
  • This publication is cited in the following 10 articles:
    1. Kalai G., Meshulam R., “Relative Leray Numbers Via Spectral Sequences”, Mathematika, 67:3 (2021), 730–737  crossref  mathscinet  isi
    2. Ishikawa G. Oyama M., “Topology of Complements to Real Affine Space Line Arrangements”, J. Singul., 22 (2020), 373–384  crossref  mathscinet  isi
    3. Okounkov A., “Enumerative Geometry and Geometric Representation Theory”, Algebraic Geometry: Salt Lake City 2015, Pt 1, Proceedings of Symposia in Pure Mathematics, 97, no. 1, eds. DeFernex T., Hassett B., Mustata M., Olsson M., Popa M., Thomas R., Amer Mathematical Soc, 2018, 419–457  crossref  mathscinet  isi
    4. Yury V. Eliyashev, “Mixed Hodge structure on complements of complex coordinate subspace arrangements”, Mosc. Math. J., 16:3 (2016), 545–560  mathnet  crossref  mathscinet
    5. Yury V. Eliyashev, “The Hodge filtration on complements of complex subspace arrangements and integral representations of holomorphic functions”, Zhurn. SFU. Ser. Matem. i fiz., 6:2 (2013), 174–185  mathnet
    6. Yu. V. Èliyashev, “The homology and cohomology of the complements to some arrangements of codimension two complex planes”, Siberian Math. J., 52:3 (2011), 554–562  mathnet  crossref  mathscinet  isi
    7. Karasev R.N., “The genus and the category of configuration spaces”, Topology Appl., 156:14 (2009), 2406–2415  crossref  mathscinet  zmath  isi  elib  scopus
    8. Kalai G., “Intersections of Leray complexes and regularity of monomial ideals”, J. Combin. Theory Ser. A, 113:7 (2006), 1586–1592  crossref  mathscinet  zmath  isi  elib  scopus
    9. Vassiliev V.A., “Combinatorial formulas for cohomology of spaces of knots”, Advances in Topological Quantum Field Theory, Nato Science Series, Series II: Mathematics, Physics and Chemistry, 179, 2004, 1–21  mathscinet  zmath  isi
    10. Katz G., “How tangents solve algebraic equations, or a remarkable geometry of discriminant varieties”, Expo. Math., 21:3 (2003), 219–261  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1377
    Russian version PDF:480
    English version PDF:1259
    References:151
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025