Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2001, Volume 56, Issue 1, Pages 1–60
DOI: https://doi.org/10.1070/rm2001v056n01ABEH000356
(Mi rm356)
 

This article is cited in 85 scientific papers (total in 86 papers)

Commutative homogeneous spaces and co-isotropic symplectic actions

È. B. Vinberg

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The paper is a survey of relationships among the following possible properties of a Riemannian homogeneous space X=G/K: Selberg's property of weak symmetry, commutativity of the algebra of K-invariant measures on X, commutativity of the algebra of G-invariant differential operators on X, commutativity of the Poisson algebra of G-invariant functions on the cotangent bundle of the space X, and (if G is a reductive group) the property of the spectrum of the linear representation of the group G on the algebra of polynomial functions on X being multiplicity-free. Diverse results on structure and classification are presented, including the author's classification of irreducible Riemannian homogeneous spaces of Heisenberg type for which the Poisson algebra of invariant functions on the cotangent bundle is commutative.
Received: 12.10.2000
Bibliographic databases:
Document Type: Article
UDC: 514.75
MSC: Primary 14M17, 22F30; Secondary 57S15, 53C35, 14D25, 17B63, 57R50, 53D05
Language: English
Original paper language: Russian
Citation: È. B. Vinberg, “Commutative homogeneous spaces and co-isotropic symplectic actions”, Russian Math. Surveys, 56:1 (2001), 1–60
Citation in format AMSBIB
\Bibitem{Vin01}
\by \`E.~B.~Vinberg
\paper Commutative homogeneous spaces and co-isotropic symplectic actions
\jour Russian Math. Surveys
\yr 2001
\vol 56
\issue 1
\pages 1--60
\mathnet{http://mi.mathnet.ru/eng/rm356}
\crossref{https://doi.org/10.1070/rm2001v056n01ABEH000356}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1845642}
\zmath{https://zbmath.org/?q=an:0996.53034}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2001RuMaS..56....1V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170126400001}
\elib{https://elibrary.ru/item.asp?id=14067952}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035596192}
Linking options:
  • https://www.mathnet.ru/eng/rm356
  • https://doi.org/10.1070/rm2001v056n01ABEH000356
  • https://www.mathnet.ru/eng/rm/v56/i1/p3
  • This publication is cited in the following 86 articles:
    1. Dmitri I. Panyushev, “Orbits and invariants for coisotropy representations”, manuscripta math., 176:1 (2025)  crossref
    2. Michael Finkelberg, Victor Ginzburg, Roman Travkin, “Lagrangian Subvarieties of Hyperspherical Varieties”, Geom. Funct. Anal., 2025  crossref
    3. Koichi Arashi, “Multiplicity-Free Representations and Coisotropic Actions of Certain Nilpotent Lie Groups over Quasi-Symmetric Siegel Domains”, Complex Anal. Oper. Theory, 19:3 (2025)  crossref
    4. Silvina Campos, José García, Linda Saal, “Spherical Analysis Attached to Some m-Step Nilpotent Lie Group”, J Fourier Anal Appl, 30:2 (2024)  crossref
    5. Francesca Astengo, Bianca Di Blasio, Fulvio Ricci, “Schwartz correspondence for real motion groups in low dimensions”, Ann Glob Anal Geom, 66:2 (2024)  crossref
    6. Toshiyuki Kobayashi, Toshihisa Kubo, “Recent advances in branching problems of representations”, Sugaku Expositions, 2024  crossref
    7. Jie Liu, “On moment map and bigness of tangent bundles of G-varieties”, Alg. Number Th., 17:8 (2023), 1501  crossref
    8. Silvina Campos, José García, Linda Saal, “Generalized Gelfand Pairs Associated to m-Step Nilpotent Lie Groups”, J Geom Anal, 33:2 (2023)  crossref
    9. Alexey Podobryaev, “Homogeneous geodesics in sub-Riemannian geometry”, ESAIM: COCV, 29 (2023), 11  crossref
    10. Magazev A.A., Popov A.S., Shirokov V I., “Constructing Invariant Differential Operators on Homogeneous Spaces Using the Star Product”, Russ. Phys. J., 64:10 (2022), 1783–1791  crossref  isi  scopus
    11. D. V. Alekseevskii, M. V. Belolipetsky, S. G. Gindikin, V. G. Kac, D. I. Panyushev, D. A. Timashev, O. V. Shvartsman, A. G. Elashvili, O. S. Yakimova, “Èrnest Borisovich Vinberg (obituary)”, Russian Math. Surveys, 76:6 (2021), 1123–1135  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    12. Neretin Yu.A., “On Spherical Unitary Representations of Groups of Spheromorphisms of Bruhat-Tits Trees”, Group. Geom. Dyn., 15:3 (2021), 801–824  crossref  mathscinet  isi
    13. Benson Ch., Ratcliff G., “Spaces of Bounded Spherical Functions For Irreducible Nilpotent Gelfand Pairs: Part II”, J. Lie Theory, 31:2 (2021), 367–392  mathscinet  isi
    14. Astengo F., Di Blasio B., Ricci F., “On the Schwartz Correspondence For Gelfand Pairs of Polynomial Growth”, Rend. Lincei-Mat. Appl., 32:1 (2021), 79–96  crossref  mathscinet  isi  scopus
    15. Ignatyev M. Petukhov A., “The Orbit Method For Locally Nilpotent Infinite-Dimensional Lie Algebras”, J. Algebra, 585 (2021), 501–557  crossref  mathscinet  isi
    16. Diaz Martin R., Saal L., “On Commutative Homogeneous Vector Bundles Attached to Nilmanifolds”, Rev. Union Mat. Argent., 62:1 (2021), 141–151  crossref  mathscinet  isi
    17. Bannai E., “Gelfand Triples and Their Hecke Algebras Harmonic Analysis For Multiplicity-Free Induced Representations of Finite Groups Foreword”: CeccheriniSilberstein, T Scarabotti, F Tolli, F, Gelfand Triples and Their Hecke Algebras: Harmonic Analysis For Multiplicity-Free Induced Representations of Finite Groups, Lect. Notes Math., Lecture Notes in Mathematics, 2267, Springer International Publishing Ag, 2020, VII+  mathscinet  isi
    18. Benson Ch., Ratcliff G., “Spaces of Bounded Spherical Functions For Irreducible Nilpotent Gelfand Pairs: Part i”, J. Lie Theory, 30:3 (2020), 779–810  mathscinet  isi
    19. Panyushev I D. Yakimova O.S., “Poisson-Commutative Subalgebras and Complete Integrability on Non-Regular Coadjoint Orbits and Flag Varieties”, Math. Z., 295:1-2 (2020), 101–127  crossref  mathscinet  isi  scopus
    20. Gallo A.L., Saal V L., “A Generalized Gelfand Pair Attached to a 3-Step Nilpotent Lie Group”, J. Fourier Anal. Appl., 26:4 (2020), 62  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1723
    Russian version PDF:696
    English version PDF:94
    References:114
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025