Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2000, Volume 55, Issue 4, Pages 613–633
DOI: https://doi.org/10.1070/rm2000v055n04ABEH000312
(Mi rm312)
 

This article is cited in 9 scientific papers (total in 10 papers)

Algebraic aspects of the theory of multiplications in complex cobordism theory

B. I. Botvinnika, V. M. Buchstaberb, S. P. Novikovc, S. A. Yuzvinskiia

a University of Oregon
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
c University of Maryland
References:
Abstract: The general classiffication problem for stable associative multiplications in complex cobordism theory is considered. It is shown that this problem reduces to the theory of a Hopf algebra SS (the Landweber–Novikov algebra) acting on the dual Hopf algebra SS with distinguished "topologically integral" part ΛΛ that corresponds to the complex cobordism algebra of a point. We describe the formal group and its logarithm in terms of the algebra representations of SS. The notion of one-dimensional representations of a Hopf algebra is introduced, and examples of such representations motivated by well-known topological and algebraic results are given. Divided-difference operators on an integral domain are introduced and studied, and important examples of such operators arising from analysis, representation theory, and non-commutative algebra are described. We pay special attention to operators of division by a non-invertible element of a ring. Constructions of new associative multiplications (not necessarily commutative) are given by using divided-difference operators. As an application, we describe classes of new associative products in complex cobordism theory.
Received: 01.06.2000
Bibliographic databases:
Document Type: Article
UDC: 513.836
MSC: Primary 57R77; Secondary 16W30, 57T05, 16G99, 55N22
Language: English
Original paper language: Russian
Citation: B. I. Botvinnik, V. M. Buchstaber, S. P. Novikov, S. A. Yuzvinskii, “Algebraic aspects of the theory of multiplications in complex cobordism theory”, Russian Math. Surveys, 55:4 (2000), 613–633
Citation in format AMSBIB
\Bibitem{BotBucNov00}
\by B.~I.~Botvinnik, V.~M.~Buchstaber, S.~P.~Novikov, S.~A.~Yuzvinskii
\paper Algebraic aspects of the theory of multiplications in complex cobordism theory
\jour Russian Math. Surveys
\yr 2000
\vol 55
\issue 4
\pages 613--633
\mathnet{http://mi.mathnet.ru/eng/rm312}
\crossref{https://doi.org/10.1070/rm2000v055n04ABEH000312}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1786728}
\zmath{https://zbmath.org/?q=an:0971.57038}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2000RuMaS..55..613B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000167387200002}
\elib{https://elibrary.ru/item.asp?id=13814412}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034562919}
Linking options:
  • https://www.mathnet.ru/eng/rm312
  • https://doi.org/10.1070/rm2000v055n04ABEH000312
  • https://www.mathnet.ru/eng/rm/v55/i4/p5
  • This publication is cited in the following 10 articles:
    1. T. E. Panov, G. S. Chernykh, “$SU$-linear operations in complex cobordism and the $c_1$-spherical bordism theory”, Izv. Math., 87:4 (2023), 768–797  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. I. Yu. Limonchenko, T. E. Panov, G. S. Chernykh, “$SU$-bordism: structure results and geometric representatives”, Russian Math. Surveys, 74:3 (2019), 461–524  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. V. M. Buchstaber, “Complex cobordism and formal groups”, Russian Math. Surveys, 67:5 (2012), 891–950  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. V. M. Buchstaber, N. Yu. Erokhovets, “Polytopes, Fibonacci numbers, Hopf algebras, and quasi-symmetric functions”, Russian Math. Surveys, 66:2 (2011), 271–367  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. Victor M. Buchstaber, Kolmogorov's Heritage in Mathematics, 2007, 139  crossref
    6. Savin A., Sternin B., “Pseudo differential subspaces and their applications in elliptic theory”, C(star)-Algebras and Elliptic Theory, Trends in Mathematics, 2006, 247–289  crossref  mathscinet  zmath  isi
    7. Braden H.W., Feldman K.E., “Functional equations and the generalised elliptic genus”, J. Nonlinear Math. Phys., 12, suppl. 1 (2005), 74–85  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    8. A. A. Bolibrukh, A. P. Veselov, A. B. Zhizhchenko, I. M. Krichever, A. A. Mal'tsev, S. P. Novikov, T. E. Panov, Yu. M. Smirnov, “Viktor Matveevich Buchstaber (on his 60th birthday)”, Russian Math. Surveys, 58:3 (2003), 627–635  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    9. Feldman, KE, “Chern numbers of Chern submanifolds”, Quarterly Journal of Mathematics, 53 (2002), 421  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    10. V. M. Maksimov, “Representation of the algebra of linear maps by a skew product of algebras”, Russian Math. Surveys, 56:1 (2001), 168–169  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:998
    Russian version PDF:348
    English version PDF:53
    References:102
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025