Citation:
S. N. Kruzhkov, N. S. Petrosyan, “Asymptotic behaviour of the solutions of the Cauchy problem for non-linear first order equations”, Russian Math. Surveys, 42:5 (1987), 1–47
\Bibitem{KruPet87}
\by S.~N.~Kruzhkov, N.~S.~Petrosyan
\paper Asymptotic behaviour of the solutions of the Cauchy problem for non-linear first order equations
\jour Russian Math. Surveys
\yr 1987
\vol 42
\issue 5
\pages 1--47
\mathnet{http://mi.mathnet.ru/eng/rm2615}
\crossref{https://doi.org/10.1070/RM1987v042n05ABEH001468}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=928773}
\zmath{https://zbmath.org/?q=an:0672.35006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1987RuMaS..42....1K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987P735400001}
Linking options:
https://www.mathnet.ru/eng/rm2615
https://doi.org/10.1070/RM1987v042n05ABEH001468
https://www.mathnet.ru/eng/rm/v42/i5/p3
This publication is cited in the following 12 articles:
Natalia Petrosyan, A. Nadykto, L. Uvarova, A. Zelensky, P. Pivkin, P. Lima, N. Aleksic, K. Egiazarian, X. Jiang, “Asymptotic Time-Behaviour of Solutions to Scalar Conservation Law with a Convex Flux Function”, EPJ Web Conf., 224 (2019), 01005
I. V. Popov, “Postroenie raznostnoi skhemy povyshennogo poryadka approksimatsii dlya nelineinogo uravneniya perenosa s ispolzovaniem adaptivnoi iskusstvennoi vyazkosti”, Preprinty IPM im. M. V. Keldysha, 2017, 068, 21 pp.
G. M. Henkin, A. A. Shananin, “Cauchy–Gelfand Problem and the Inverse Problem for a First-Order Quasilinear Equation”, Funct. Anal. Appl., 50:2 (2016), 131–142
G. M. Henkin, A. A. Shananin, “On the Cauchy–Gelfand problem”, Dokl. Math., 92:3 (2015), 731
G.M. Henkin, A.A. Shananin, “Cauchy–Gelfand problem for quasilinear conservation law”, Bulletin des Sciences Mathématiques, 2014
Kazeikina A.V., “Primery otsutstviya beguschei volny dlya obobschennogo uravneniya kortevega–de friza–byurgersa”, Vestnik Moskovskogo universiteta. Seriya 15: Vychislitelnaya matematika i kibernetika, 1 (2011), 17a–24
Examples of traveling wave absence for the generalized korteweg–de vries–burgers equation
Giovanni Bellettini, Federica Caselli, Mauro Mariani, “Quasi-potentials of the entropy functionals for scalar conservation laws”, Journal of Functional Analysis, 258:2 (2010), 534
A. V. Gasnikov, “Time-asymptotic behaviour of a solution of the Cauchy initial-value problem for a conservation law with non-linear divergent viscosity”, Izv. Math., 73:6 (2009), 1111–1148
A. V. Gasnikov, “Convergence in the form of a solution to the Cauchy problem for a quasilinear parabolic equation with a monotone initial condition to a system of waves”, Comput. Math. Math. Phys., 48:8 (2008), 1376–1405
Corrado Mascia, “Qualitative behavior of conservation laws with reaction term and nonconvex flux”, Quart. Appl. Math., 58:4 (2000), 739
N. S. Bakhvalov, M. I. Zelikin, A. S. Kalashnikov, V. L. Kamynin, O. A. Oleinik, E. Yu. Panov, N. S. Petrosyan, V. M. Tikhomirov, A. V. Faminskii, V. N. Chubarikov, “Stanislav Nikolaevich Kruzhkov (obituary)”, Russian Math. Surveys, 53:5 (1998), 1071–1078
A. I. Subbotin, “Minimax solutions of first-order partial differential equations”, Russian Math. Surveys, 51:2 (1996), 283–313