Loading [MathJax]/jax/output/CommonHTML/jax.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 6, Pages 1111–1148
DOI: https://doi.org/10.1070/IM2009v073n06ABEH002475
(Mi im2753)
 

This article is cited in 8 scientific papers (total in 8 papers)

Time-asymptotic behaviour of a solution of the Cauchy initial-value problem for a conservation law with non-linear divergent viscosity

A. V. Gasnikov

Moscow Institute of Physics and Technology
References:
Abstract: We study the time-asymptotic behaviour of a solution of the Cauchy initial-value problem for a conservation law with non-linear divergent viscosity. We shall prove that when a bounded measurable initial function has limits at ±, a solution of the Cauchy initial-value problem converges uniformly to a system of waves consisting of travelling waves and rarefaction waves, where the phase shifts of the travelling waves are allowed to depend on time. The rate of convergence is estimated under additional conditions on the initial function.
Keywords: conservation law with non-linear divergent viscosity, equation of Burgers type, asymptotics of solutions, convergence in form, convergence on the phase plane, travelling wave, rarefaction wave, system of waves, maximum principle, comparison principle (on the phase plane), inequality of Kolmogorov type.
Received: 10.12.2007
Revised: 21.04.2008
Bibliographic databases:
UDC: 519.633
Language: English
Original paper language: Russian
Citation: A. V. Gasnikov, “Time-asymptotic behaviour of a solution of the Cauchy initial-value problem for a conservation law with non-linear divergent viscosity”, Izv. Math., 73:6 (2009), 1111–1148
Citation in format AMSBIB
\Bibitem{Gas09}
\by A.~V.~Gasnikov
\paper Time-asymptotic behaviour of a~solution of the Cauchy initial-value problem for a~conservation law with non-linear divergent viscosity
\jour Izv. Math.
\yr 2009
\vol 73
\issue 6
\pages 1111--1148
\mathnet{http://mi.mathnet.ru/eng/im2753}
\crossref{https://doi.org/10.1070/IM2009v073n06ABEH002475}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2640978}
\zmath{https://zbmath.org/?q=an:05668379}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73.1111G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000274926100003}
\elib{https://elibrary.ru/item.asp?id=20358701}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-74549223590}
Linking options:
  • https://www.mathnet.ru/eng/im2753
  • https://doi.org/10.1070/IM2009v073n06ABEH002475
  • https://www.mathnet.ru/eng/im/v73/i6/p39
  • This publication is cited in the following 8 articles:
    1. Fedor Bakharev, Aleksandr Enin, Yulia Petrova, Nikita Rastegaev, “Impact of dissipation ratio on vanishing viscosity solutions of the Riemann problem for chemical flooding model”, J. Hyper. Differential Equations, 20:02 (2023), 407  crossref
    2. Henkin G.M., Shananin A.A., “Cauchy-Gelfand Problem For Quasilinear Conservation Law”, Bull. Sci. Math., 138:7 (2014), 783–804  crossref  mathscinet  zmath  isi
    3. Buslaev A.P., Gasnikov A.V., Yashina M.V., “Selected mathematical problems of traffic flow theory”, Int. J. Comput. Math., 89:3 (2012), 409–432  crossref  mathscinet  zmath  isi  elib
    4. A. V. Gasnikov, “On the velocity of separation between two successive traveling waves in the asymptotics of the solution to the Cauchy problem for a Burgers-type equation”, Comput. Math. Math. Phys., 52:6 (2012), 937–939  mathnet  crossref  mathscinet  adsnasa  isi  elib  elib
    5. Turanov Kh.T., Chuev N.P., “Chislennoe modelirovanie dvizheniya gruzovykh vagonov na mestakh neobschego polzovaniya”, Nauka i tekhnika transporta, 2012, no. 3, 8–18  elib
    6. Henkin G.M., “Burgers type equations, Gelfand's problem and Schumpeterian dynamics”, J. Fixed Point Theory Appl., 11:2 (2012), 199–223  crossref  mathscinet  zmath  isi  elib
    7. Kazeikina A.V., “Primery otsutstviya beguschei volny dlya obobschennogo uravneniya Kortevega–de Friza–Byurgersa”, Vestn. Mosk. un-ta. Ser. 15. Vychislitelnaya matematika i kibernetika, 2011, no. 1, 17a–24  mathscinet  elib
    8. A. V. Kazeykina, “Examples of the absence of a traveling wave for the generalized Korteweg-de Vries-Burgers equation”, MoscowUniv.Comput.Math.Cybern., 35:1 (2011), 14  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1011
    Russian version PDF:315
    English version PDF:44
    References:114
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025