Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2005, Volume 60, Issue 5, Pages 875–965
DOI: https://doi.org/10.1070/RM2005v060n05ABEH003736
(Mi rm1643)
 

This article is cited in 53 scientific papers (total in 53 papers)

Birationally rigid Fano varieties

I. A. Cheltsov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: The birational superrigidity and, in particular, the non-rationality of a smooth three-dimensional quartic was proved by V. Iskovskikh and Yu. Manin in 1971, and this led immediately to a counterexample to the three-dimensional Lüroth problem. Since then, birational rigidity and superrigidity have been proved for a broad class of higher-dimensional varieties, among which the Fano varieties occupy the central place. The present paper is a survey of the theory of birationally rigid Fano varieties.
Received: 23.06.2005
Bibliographic databases:
Document Type: Article
UDC: 512.76
MSC: Primary 14J45, 14E05, 14E30; Secondary 14G22, 14J30, 14E07, 14M20, 14M10
Language: English
Original paper language: Russian
Citation: I. A. Cheltsov, “Birationally rigid Fano varieties”, Russian Math. Surveys, 60:5 (2005), 875–965
Citation in format AMSBIB
\Bibitem{Che05}
\by I.~A.~Cheltsov
\paper Birationally rigid Fano varieties
\jour Russian Math. Surveys
\yr 2005
\vol 60
\issue 5
\pages 875--965
\mathnet{http://mi.mathnet.ru/eng/rm1643}
\crossref{https://doi.org/10.1070/RM2005v060n05ABEH003736}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2195677}
\zmath{https://zbmath.org/?q=an:1145.14032}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005RuMaS..60..875C}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000235973500003}
\elib{https://elibrary.ru/item.asp?id=25787219}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33644964853}
Linking options:
  • https://www.mathnet.ru/eng/rm1643
  • https://doi.org/10.1070/RM2005v060n05ABEH003736
  • https://www.mathnet.ru/eng/rm/v60/i5/p71
  • This publication is cited in the following 53 articles:
    1. Ivan Cheltsov, Yuri Tschinkel, Zhijia Zhang, “Equivariant geometry of the Segre cubic and the Burkhardt quartic”, Sel. Math. New Ser., 31:1 (2025)  crossref
    2. Ivan Cheltsov, Yuri Tschinkel, Zhijia Zhang, “Equivariant geometry of singular cubic threefolds”, Forum of Mathematics, Sigma, 13 (2025)  crossref
    3. Benson Farb, “Irrationality of the general smooth quartic 3-fold using intermediate Jacobians”, Advances in Mathematics, 465 (2025), 110160  crossref
    4. Charles Favre, Alexandra Kuznetsova, “Families of automorphisms on abelian varieties”, Math. Ann., 2024  crossref
    5. A. V. Pukhlikov, “Birationally rigid hypersurfaces with quadratic singularities of low rank”, Sb. Math., 215:6 (2024), 823–840  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. Aleksandr Pukhlikov, “Birationally rigid Fano-Mori fibre spaces”, Forum of Mathematics, Sigma, 12 (2024)  crossref
    7. Ivan Cheltsov, Adrien Dubouloz, Takashi Kishimoto, “Toric G-solid Fano threefolds”, Sel. Math. New Ser., 29:2 (2023)  crossref
    8. Mikhail Ovcharenko, “The classification of smooth well-formed Fano weighted complete intersections”, Int. J. Math., 34:11 (2023), 2350064  mathnet  crossref  isi
    9. Andrey Trepalin, “Birational classification of pointless del Pezzo surfaces of degree 8”, Eur. J. Math., 9 (2023), 9  mathnet  crossref
    10. Ivan Cheltsov, “Kummer quartic double solids”, Rend. Circ. Mat. Palermo, II. Ser, 72:3 (2023), 1993  crossref
    11. A. V. Pukhlikov, “Effective results in the theory of birational rigidity”, Russian Math. Surveys, 77:2 (2022), 301–354  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    12. Birkar C., “Generalised Pairs in Birational Geometry”, EMS Surv. Math. Sci., 8:1-2 (2021), 5–24  crossref  mathscinet  isi
    13. Kresch A., Tschinkel Yu., “Brauer Groups of Involution Surface Bundles”, Pure Appl. Math. Q., 17:2, SI (2021), 649–669  crossref  mathscinet  isi
    14. Zhuang Z., “Birational Superrigidity Is Not a Locally Closed Property”, Sel. Math.-New Ser., 26:1 (2020), UNSP 11  crossref  mathscinet  isi  scopus
    15. Cheltsov I., Kuznetsov A., Shramov C., “Coble Fourfold, S-6-Invariant Quartic Threefolds, and Wiman-Edge Sextics”, Algebr. Number Theory, 14:1 (2020), 213–274  crossref  mathscinet  isi
    16. Shramov C., “Automorphisms of Cubic Surfaces Without Points”, Int. J. Math., 31:11 (2020), 2050083  crossref  mathscinet  isi
    17. Fontanari C., Martinelli D., “A Remark on Rationally Connected Varieties and Mori Dream Spaces”, Proc. Edinb. Math. Soc., 62:1 (2019), 259–263  crossref  mathscinet  isi  scopus
    18. das Dores L., Mauri M., “G-Birational Superrigidity of Del Pezzo Surfaces of Degree 2 and 3”, Eur. J. Math., 5:3, SI (2019), 798–827  crossref  mathscinet  isi
    19. Kollar J., “Algebraic Hypersurfaces”, Bull. Amer. Math. Soc., 56:4 (2019), 543–568  crossref  mathscinet  isi
    20. Cheltsov I., Shramov C., “Finite Collineation Groups and Birational Rigidity”, Sel. Math.-New Ser., 25:5 (2019), UNSP 71  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:883
    Russian version PDF:333
    English version PDF:40
    References:104
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025