Loading [MathJax]/jax/output/CommonHTML/jax.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2015, Volume 20, Issue 2, Pages 123–133
DOI: https://doi.org/10.1134/S1560354715020021
(Mi rcd49)
 

This article is cited in 14 scientific papers (total in 14 papers)

Analytical Solutions of the Lorenz System

Nikolay A. Kudryashov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, Moscow, 115409 Russia
Citations (14)
References:
Abstract: The Lorenz system is considered. The Painlevé test for the third-order equation corresponding to the Lorenz model at σ0 is presented. The integrable cases of the Lorenz system and the first integrals for the Lorenz system are discussed. The main result of the work is the classification of the elliptic solutions expressed via the Weierstrass function. It is shown that most of the elliptic solutions are degenerated and expressed via the trigonometric functions. However, two solutions of the Lorenz system can be expressed via the elliptic functions.
Keywords: Lorenz system, Painlevé property, Painlevé test, analytical solutions, elliptic solutions.
Funding agency Grant number
Russian Science Foundation 14-11-00258
This research was supported by the Russian Science Foundation grant No. 14-11-00258.
Received: 08.01.2015
Bibliographic databases:
Document Type: Article
MSC: 01-00, 01A55, 01A60
Language: English
Citation: Nikolay A. Kudryashov, “Analytical Solutions of the Lorenz System”, Regul. Chaotic Dyn., 20:2 (2015), 123–133
Citation in format AMSBIB
\Bibitem{Kud15}
\by Nikolay A. Kudryashov
\paper Analytical Solutions of the Lorenz System
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 2
\pages 123--133
\mathnet{http://mi.mathnet.ru/rcd49}
\crossref{https://doi.org/10.1134/S1560354715020021}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3332946}
\zmath{https://zbmath.org/?q=an:1331.34005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RCD....20..123K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352483000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928266796}
Linking options:
  • https://www.mathnet.ru/eng/rcd49
  • https://www.mathnet.ru/eng/rcd/v20/i2/p123
  • This publication is cited in the following 14 articles:
    1. Muhammad Naeem Aslam, Muhammad Waheed Aslam, Muhammad Sarmad Arshad, Zeeshan Afzal, Murad Khan Hassani, Ahmed M. Zidan, Ali Akgül, “Neuro-computing solution for Lorenz differential equations through artificial neural networks integrated with PSO-NNA hybrid meta-heuristic algorithms: a comparative study”, Sci Rep, 14:1 (2024)  crossref
    2. Adolfo Guillot, Handbook of Geometry and Topology of Singularities VI: Foliations, 2024, 1  crossref
    3. Llibre J. Tian Yu., “A Survey on the Kovalevskaya Exponents and Their Applications”, J. Math. Anal. Appl., 504:2 (2021), 125576  crossref  mathscinet  isi  scopus
    4. Joan S. Muthu, P. Murali, “Review of Chaos Detection Techniques Performed on Chaotic Maps and Systems in Image Encryption”, SN COMPUT. SCI., 2:5 (2021)  crossref
    5. M. Molaei, “The Geometry of the Trajectories”, Int. J. Geom. Methods Mod. Phys., 17:4 (2020), 2050051  crossref  mathscinet  isi  scopus
    6. V.K. Kozlov, M.A. Chmykhov, “On numerical modeling of natural convection based on the OpenFOAM solver”, J. Phys.: Conf. Ser., 1686:1 (2020), 012032  crossref
    7. M. V. Demina, “Classification of meromorphic integrals for autonomous nonlinear ordinary differential equations with two dominant monomials”, J. Math. Anal. Appl., 479:2 (2019), 1851–1862  crossref  mathscinet  zmath  isi  scopus
    8. L. Bougoffa, S. Al-Awfi, S. Bougouffa, “A complete and partial integrability technique of the Lorenz system”, Results Phys., 9 (2018), 712–716  crossref  isi  scopus
    9. Jaume Llibre, Clàudia Valls, “Darboux Polynomials, Balances and Painlevé Property”, Regul. Chaotic Dyn., 22:5 (2017), 543–550  mathnet  crossref
    10. A. K. Volkov, N. A. Kudryashov, “Nonlinear waves described by a fifth-order equation derived from the Fermi–Pasta–Ulam system”, Comput. Math. Math. Phys., 56:4 (2016), 680–687  mathnet  crossref  crossref  mathscinet  isi  elib
    11. N. A. Kudryashov, “On solutions of generalized modified Korteweg-de Vries equation of the fifth order with dissipation”, Appl. Math. Comput., 280 (2016), 39–45  crossref  mathscinet  isi  scopus
    12. N. A. Kudryashov, “From the Fermi-Pasta-Ulam model to higher-order nonlinear evolution equations”, Rep. Math. Phys., 77:1 (2016), 57–67  crossref  mathscinet  zmath  isi  scopus
    13. N. A. Kudryashov, Yu. S. Ivanova, “Painlevé analysis and exact solutions for the modified Korteweg-de Vries equation with polynomial source”, Appl. Math. Comput., 273 (2016), 377–382  crossref  mathscinet  isi  scopus
    14. N. A. Kudryashov, “Refinement of the Korteweg-de Vries equation from the Fermi-Pasta-Ulam model”, Phys. Lett. A, 379:40-41 (2015), 2610–2614  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:443
    References:106
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025