Abstract:
For a given polynomial differential system we provide different necessary conditions for the existence of Darboux polynomials using the balances of the system and the Painlevé property. As far as we know, these are the first results which relate the Darboux theory of integrability, first, to the Painlevé property and, second, to the Kovalevskaya exponents. The relation of these last two notions to the general integrability has been intensively studied over these last years.
The first author is partially supported by a FEDER-MINECO grant MTM2016-77278-P, a MINECO grant MTM2013-40998-P, and an AGAUR grant number 2014SGR-568. The second author is partially supported by FCT/Portugal through UID/MAT/04459/2013.