Loading [MathJax]/jax/output/CommonHTML/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2012, Volume 17, Issue 3-4, Pages 258–272
DOI: https://doi.org/10.1134/S1560354712030045
(Mi rcd337)
 

This article is cited in 96 scientific papers (total in 96 papers)

How to Control Chaplygin’s Sphere Using Rotors

Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev

Institute of Computer Science, Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
Citations (96)
Abstract: In the paper we study the control of a balanced dynamically non-symmetric sphere with rotors. The no-slip condition at the point of contact is assumed. The algebraic controllability is shown and the control inputs that steer the ball along a given trajectory on the plane are found. For some simple trajectories explicit tracking algorithms are proposed.
Keywords: non-holonomic constraint, non-holonomic distribution, control, Chow–Rashevsky theorem, drift.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 11.G34.31.0039
1.1248.2011
02.740.11.0195
MK-8428.2010.1
This research was done at the Udmurt State University and was supported by the Grant Program of the Government of the Russian Federation for state support of scientific research conducted under the supervision of leading scientists at Russian institutions of higher professional education (Contract No11.G34.31.0039), by the Federal Target Program “Development of Scientific Potential of Higher Schools” (2012–2014, 1.1248.2011 “Nonholonomic Dynamical Systems and Control Problems”) and the Federal Target Program “Scientific and Scientific-Pedagogical Personnel of Innovative Russia” (2009—2013, “Scientific-Educational Center “Regular and Chaotic Dynamics” State Contract No 02.740.11.0195). The work of A. A.Kilin was subsidized by the Presidential Grant of the Russian Federation for Support of young Candidates of Science MK-8428.2010.1.
Received: 10.03.2012
Accepted: 02.06.2012
Bibliographic databases:
Document Type: Article
Language: English
Citation: Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “How to Control Chaplygin’s Sphere Using Rotors”, Regul. Chaotic Dyn., 17:3-4 (2012), 258–272
Citation in format AMSBIB
\Bibitem{BorKilMam12}
\by Alexey V.~Borisov, Alexander A.~Kilin, Ivan S.~Mamaev
\paper How to Control Chaplygin’s Sphere Using Rotors
\jour Regul. Chaotic Dyn.
\yr 2012
\vol 17
\issue 3-4
\pages 258--272
\mathnet{http://mi.mathnet.ru/rcd337}
\crossref{https://doi.org/10.1134/S1560354712030045}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2956222}
\zmath{https://zbmath.org/?q=an:1264.37016}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012RCD....17..258B}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865571827}
Linking options:
  • https://www.mathnet.ru/eng/rcd337
  • https://www.mathnet.ru/eng/rcd/v17/i3/p258
  • This publication is cited in the following 96 articles:
    1. E. A. Mikishanina, “Two Ways to Control a Pendulum-Type Spherical Robot on a Moving Platform in a Pursuit Problem”, Mech. Solids, 59:1 (2024), 127  crossref
    2. E. A. Mikishanina, “Control of a Spherical Robot with a Nonholonomic Omniwheel Hinge Inside”, Rus. J. Nonlin. Dyn., 20:1 (2024), 179–193  mathnet  crossref
    3. N. V. Nor, “Reinforcement Learning in the Task of Spherical Robot Motion Control”, Rus. J. Nonlin. Dyn., 20:2 (2024), 295–310  mathnet  crossref
    4. E. A. Mikishanina, “Two Ways to Control a Pendulum-Type Spherical Robot on a Moving Platform in a Pursuit Problem”, Izvestiâ Rossijskoj akademii nauk. Mehanika tverdogo tela, 2024, no. 1, 230  crossref
    5. Alexander P. Ivanov, “On the bifurcations of the phase portrait of gyrostat”, Nonlinear Dyn, 112:20 (2024), 17989  crossref
    6. Luis C. García-Naranjo, Juan C. Marrero, David Martín de Diego, Paolo E. Petit Valdés, “Almost-Poisson Brackets for Nonholonomic Systems with Gyroscopic Terms and Hamiltonisation”, J Nonlinear Sci, 34:6 (2024)  crossref
    7. E. A. Mikishanina, “Printsipy realizatsii servosvyazei v negolonomnykh mekhanicheskikh sistemakh”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2024, no. 89, 103–118  mathnet  crossref
    8. A.P. Ivanov, “Attenuation control of gyrostat without energy supply”, International Journal of Non-Linear Mechanics, 154 (2023), 104441  crossref
    9. Seyed Amir Tafrishi, Mikhail Svinin, Motoji Yamamoto, Yasuhisa Hirata, “A geometric motion planning for a spin-rolling sphere on a plane”, Applied Mathematical Modelling, 121 (2023), 542  crossref
    10. Bernard Brogliato, “Modeling, analysis and control of robot–object nonsmooth underactuated Lagrangian systems: A tutorial overview and perspectives”, Annual Reviews in Control, 55 (2023), 297  crossref
    11. Yu. L. Karavaev, “Spherical Robots: An Up-to-Date Overview of Designs and Features”, Rus. J. Nonlin. Dyn., 18:4 (2022), 709–750  mathnet  crossref  mathscinet
    12. G. R. Saypulaev, B. I. Adamov, A. I. Kobrin, “Comparative Analysis of the Dynamics of a Spherical Robot with a Balanced Internal Platform Taking into Account Different Models of Contact Friction”, Rus. J. Nonlin. Dyn., 18:5 (2022), 803–815  mathnet  crossref  mathscinet
    13. E. A. Mikishanina, “Motion Control of a Spherical Robot with a Pendulum Actuator for Pursuing a Target”, Rus. J. Nonlin. Dyn., 18:5 (2022), 899–913  mathnet  crossref  mathscinet
    14. Alexander A. Kilin, Elena N. Pivovarova, “Motion control of the spherical robot rolling on a vibrating plane”, Applied Mathematical Modelling, 109 (2022), 492  crossref
    15. Alexander A. Kilin, Elena N. Pivovarova, “A Particular Integrable Case in the Nonautonomous Problem of a Chaplygin Sphere Rolling on a Vibrating Plane”, Regul. Chaotic Dyn., 26:6 (2021), 775–786  mathnet  crossref
    16. Alexey V. Borisov, Evgeniya A. Mikishanina, “Two Nonholonomic Chaotic Systems. Part II. On the Rolling of a Nonholonomic Bundle of Two Bodies”, Regul. Chaotic Dyn., 25:4 (2020), 392–400  mathnet  crossref  mathscinet
    17. Alexander A. Kilin, Elena N. Pivovarova, “Stability and Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base”, Regul. Chaotic Dyn., 25:6 (2020), 729–752  mathnet  crossref  mathscinet
    18. Sardeshmukh P.A., Yoder Ch.D., Talaski D.J., Mazzoleni A.P., “Mathematical Modeling and Parametric Study of a Planar Tumbleweed Rover Demonstrator”, Acta Astronaut., 177 (2020), 48–57  crossref  isi  scopus
    19. Bizyaev I.A. Mamaev I.S., “Dynamics of the Nonholonomic Suslov Problem Under Periodic Control: Unbounded Speedup and Strange Attractors”, J. Phys. A-Math. Theor., 53:18 (2020), 185701  crossref  mathscinet  isi  scopus
    20. Putkaradze V. Rogers S., “on the Optimal Control of a Rolling Ball Robot Actuated By Internal Point Masses”, J. Dyn. Syst. Meas. Control-Trans. ASME, 142:5 (2020)  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:286
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025