Abstract:
In this paper we investigate the motion of a Chaplygin sphere rolling without slipping on a plane performing horizontal periodic oscillations. We show that in the system under consideration the projections of the angular momentum onto the axes of the fixed coordinate system remain unchanged. The investigation of the reduced system on a fixed level set of first integrals reduces to analyzing a three-dimensional period advance map on SO(3)SO(3). The analysis of this map suggests that in the general case the problem considered is nonintegrable. We find partial solutions to the system which are a generalization of permanent rotations and correspond to nonuniform rotations about a body- and space-fixed axis. We also find a particular integrable case which, after time is rescaled, reduces to the classical Chaplygin sphere rolling problem on the zero level set of the area integral.
Keywords:
Chaplygin sphere, rolling motion, nonholonomic constraint, nonautonomous dynamical
system, periodic oscillations, permanent rotations, integrable case, period advance map.
The work of A.A.Kilin (Sections 1, 2, 4, 7 and 8) was performed at the Ural Mathematical
Center (agreement no. 075-02-2021-1383). The work of E.N. Pivovarova (Sections 3, 5 and 6) is
supported by the Russian Science Foundation under grant no. 20-71-00053.
Citation:
Alexander A. Kilin, Elena N. Pivovarova, “A Particular Integrable Case in the Nonautonomous Problem
of a Chaplygin Sphere Rolling on a Vibrating Plane”, Regul. Chaotic Dyn., 26:6 (2021), 775–786
\Bibitem{KilPiv21}
\by Alexander~A. Kilin, Elena N. Pivovarova
\paper A Particular Integrable Case in the Nonautonomous Problem
of a Chaplygin Sphere Rolling on a Vibrating Plane
\jour Regul. Chaotic Dyn.
\yr 2021
\vol 26
\issue 6
\pages 775--786
\mathnet{http://mi.mathnet.ru/rcd1146}
\crossref{https://doi.org/10.1134/S1560354721060149}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000727365900014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85120883007}
Linking options:
https://www.mathnet.ru/eng/rcd1146
https://www.mathnet.ru/eng/rcd/v26/i6/p775
This publication is cited in the following 5 articles:
Mariana Costa-Villegas, Luis C. García-Naranjo, “Affine Generalizations of the Nonholonomic Problem of a Convex Body Rolling without Slipping on the Plane”, Regul. Chaot. Dyn., 2025
Alexander A. Kilin, Tatiana B. Ivanova, Elena N. Pivovarova, “Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base Using Feedback”, Regul. Chaotic Dyn., 28:6 (2023), 888–905
Alexander A. Kilin, Elena N. Pivovarova, “Stability of Vertical Rotations of an Axisymmetric Ellipsoid on a Vibrating Plane”, Mathematics, 11:18 (2023), 3948
E. M. Artemova, A. A. Kilin, Yu. V. Korobeinikova, “Issledovanie orbitalnoi ustoichivosti pryamolineinykh kachenii roller-reisera po vibriruyuschei ploskosti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:4 (2022), 615–629
Alexander A. Kilin, Elena N. Pivovarova, “Motion control of the spherical robot rolling on a vibrating plane”, Applied Mathematical Modelling, 109 (2022), 492