Abstract:
The quadratic Lienard equation is widely used in many applications. A connection between this equation and a linear second-order differential equation has been discussed. Here we show that the whole family of quadratic Lienard equations can be transformed into an equation for the elliptic functions. We demonstrate that this connection can be useful for finding explicit forms of general solutions of the quadratic Lienard equation. We provide several examples of application of our approach.
Keywords:
quadratic lienard equation, elliptic functions, nonlocal transformations, general solution.
This research was partially supported by the grant for Scientific Schools 2296.2014.1, by the grant for the state support of young Russian scientists 3694.2014.1 and by RFBR grants 14–01–00498 and 14–01–31078.
Citation:
Nikolay A. Kudryashov, Dmitry I. Sinelshchikov, “On the Connection of the Quadratic Lienard Equation with an Equation for the Elliptic Functions”, Regul. Chaotic Dyn., 20:4 (2015), 486–496
\Bibitem{KudSin15}
\by Nikolay A. Kudryashov, Dmitry I. Sinelshchikov
\paper On the Connection of the Quadratic Lienard Equation with an Equation for the Elliptic Functions
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 4
\pages 486--496
\mathnet{http://mi.mathnet.ru/rcd28}
\crossref{https://doi.org/10.1134/S1560354715040073}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3376604}
\zmath{https://zbmath.org/?q=an:06507838}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RCD....20..486K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000358990500007}
\elib{https://elibrary.ru/item.asp?id=23996062}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938579909}
Linking options:
https://www.mathnet.ru/eng/rcd28
https://www.mathnet.ru/eng/rcd/v20/i4/p486
This publication is cited in the following 25 articles:
M. V. Gasanov, A. G. Gulkanov, K. A. Modestov, “Analytical Solution of the Rayleigh – Plesset Equation
Filled with Van Der Waals Gas for Various Isoprocesses”, Rus. J. Nonlin. Dyn., 20:1 (2024), 3–13
José F. Cariñena, Partha Guha, “Geometry of non-standard Hamiltonian structures of Liénard equations and contact structure”, Int. J. Geom. Methods Mod. Phys., 21:10 (2024)
José F. Cariñena, A. Ghose Choudhury, Partha Guha, “Levinson–Smith Dissipative Equations and Geometry of GENERIC Formalism and Contact Hamiltonian Mechanics”, J Nonlinear Sci, 34:6 (2024)
Isaac A. García, Jaume Giné, Jaume Llibre, “Characterization of global centers by the monodromy at infinity”, Communications in Nonlinear Science and Numerical Simulation, 2024, 108543
O. I. Chashchina, A. Sen, Z. K. Silagadze, “On deformations of classical mechanics due to planck-scale physics”, Int. J. Mod. Phys. D, 29:10 (2020), 2050070
Yu. Qin, Q. Lou, Zh. Wang, L. Zou, “Kudryashov and sinelshchikov's method for solving the radial oscillation problem of multielectron bubbles in liquid helium”, J. Math. Chem., 58:7 (2020), 1481–1488
A. A. Kosov, È. I. Semenov, “Exact solutions of the nonlinear diffusion equation”, Siberian Math. J., 60:1 (2019), 93–107
J. F. Carinena, P. Guha, “Nonstandard Hamiltonian structures of the Lienard equation and contact geometry”, Int. J. Geom. Methods Mod. Phys., 16:1, SI (2019), 1940001
Gabino Torres Vega, Nonlinear Optics - Novel Results in Theory and Applications, 2019
V. F. Morales-Delgado, J. F. Gómez-Aguilar, L. Torres, R. F. Escobar-Jiménez, M. A. Taneco-Hernandez, Studies in Systems, Decision and Control, 194, Fractional Derivatives with Mittag-Leffler Kernel, 2019, 269
Ivan R. Garashchuk, Dmitry I. Sinelshchikov, Nikolay A. Kudryashov, “Nonlinear Dynamics of a Bubble Contrast Agent Oscillating near an Elastic Wall”, Regul. Chaotic Dyn., 23:3 (2018), 257–272
I. Garashchuk, D. Sinelshchikov, N. Kudryashov, “General solution of the Rayleigh equation for the description of bubble oscillations near a wall”, Mathematical Modeling and Computational Physics 2017 (MMCP 2017), EPJ Web Conf., 173, eds. G. Adam, J. Busa, M. Hnatic, D. Podgainy, EDP Sciences, 2018, 03008
Ivan Garashchuk, Dmitry Sinelshchikov, Nikolay Kudryashov, Gh. Adam, J. Buša, M. Hnatič, D. Podgainy, “General Solution of the Rayleigh Equation for the Description of Bubble Oscillations Near a Wall”, EPJ Web Conf., 173 (2018), 03008
D. I. Sinelshchikov, N. A. Kudryashov, “On the Jacobi last multipliers and Lagrangians for a family of Liénard-type equations”, Appl. Math. Comput., 307 (2017), 257–264
N. A. Kudryashov, D. I. Sinelshchikov, “On connections of the Lienard equation with some equations of Painlevé-Gambier type”, J. Math. Anal. Appl., 449:2 (2017), 1570–1580
C. Ozemir, “On some canonical classes of cubic-quintic nonlinear Schrodinger equations”, J. Math. Anal. Appl., 446:2 (2017), 1814–1832
D. I. Sinelshchikov, “On connections of the Lienard-type equations with type II Painlevé-Gambier equations”, Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2016 (ICNAAM-2016), AIP Conf. Proc., 1863, eds. T. Simos, C. Tsitouras, Amer. Inst. Phys., 2017, UNSP 380008-1
D. I. Sinelshchikov, N. A. Kudryashov, “On the general traveling wave solutions of some nonlinear diffusion equations”, V International Conference on Problems of Mathematical and Theoretical Physics and Mathematical Modelling, Journal of Physics Conference Series, 788, IOP Publishing Ltd, 2017, UNSP 012033
N. A. Kudryashov, D. I. Sinelshchikov, “New non-standard Lagrangians for the Lienard-type equations”, Appl. Math. Lett., 63 (2017), 124–129
N. A. Kudryashov, D. I. Sinelshchikov, “Analytical solutions of a nonlinear convection-diffusion equation with polynomial sources”, Automatic Control and Computer Sciences, 51:7 (2017), 621–626