Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2015, Volume 20, Issue 4, Pages 486–496
DOI: https://doi.org/10.1134/S1560354715040073
(Mi rcd28)
 

This article is cited in 25 scientific papers (total in 25 papers)

On the Connection of the Quadratic Lienard Equation with an Equation for the Elliptic Functions

Nikolay A. Kudryashov, Dmitry I. Sinelshchikov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, Moscow, 115409, Russia
Citations (25)
References:
Abstract: The quadratic Lienard equation is widely used in many applications. A connection between this equation and a linear second-order differential equation has been discussed. Here we show that the whole family of quadratic Lienard equations can be transformed into an equation for the elliptic functions. We demonstrate that this connection can be useful for finding explicit forms of general solutions of the quadratic Lienard equation. We provide several examples of application of our approach.
Keywords: quadratic lienard equation, elliptic functions, nonlocal transformations, general solution.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 2296.2014.1
3694.2014.1
Russian Foundation for Basic Research 14-01-00498
14-01-31078
This research was partially supported by the grant for Scientific Schools 2296.2014.1, by the grant for the state support of young Russian scientists 3694.2014.1 and by RFBR grants 14–01–00498 and 14–01–31078.
Received: 29.05.2015
Bibliographic databases:
Document Type: Article
MSC: 34A34, 34A05, 33E05
Language: English
Citation: Nikolay A. Kudryashov, Dmitry I. Sinelshchikov, “On the Connection of the Quadratic Lienard Equation with an Equation for the Elliptic Functions”, Regul. Chaotic Dyn., 20:4 (2015), 486–496
Citation in format AMSBIB
\Bibitem{KudSin15}
\by Nikolay A. Kudryashov, Dmitry I. Sinelshchikov
\paper On the Connection of the Quadratic Lienard Equation with an Equation for the Elliptic Functions
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 4
\pages 486--496
\mathnet{http://mi.mathnet.ru/rcd28}
\crossref{https://doi.org/10.1134/S1560354715040073}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3376604}
\zmath{https://zbmath.org/?q=an:06507838}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RCD....20..486K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000358990500007}
\elib{https://elibrary.ru/item.asp?id=23996062}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938579909}
Linking options:
  • https://www.mathnet.ru/eng/rcd28
  • https://www.mathnet.ru/eng/rcd/v20/i4/p486
  • This publication is cited in the following 25 articles:
    1. M. V. Gasanov, A. G. Gulkanov, K. A. Modestov, “Analytical Solution of the Rayleigh – Plesset Equation Filled with Van Der Waals Gas for Various Isoprocesses”, Rus. J. Nonlin. Dyn., 20:1 (2024), 3–13  mathnet  crossref
    2. José F. Cariñena, Partha Guha, “Geometry of non-standard Hamiltonian structures of Liénard equations and contact structure”, Int. J. Geom. Methods Mod. Phys., 21:10 (2024)  crossref
    3. José F. Cariñena, A. Ghose Choudhury, Partha Guha, “Levinson–Smith Dissipative Equations and Geometry of GENERIC Formalism and Contact Hamiltonian Mechanics”, J Nonlinear Sci, 34:6 (2024)  crossref
    4. Isaac A. García, Jaume Giné, Jaume Llibre, “Characterization of global centers by the monodromy at infinity”, Communications in Nonlinear Science and Numerical Simulation, 2024, 108543  crossref
    5. O. I. Chashchina, A. Sen, Z. K. Silagadze, “On deformations of classical mechanics due to planck-scale physics”, Int. J. Mod. Phys. D, 29:10 (2020), 2050070  crossref  mathscinet  zmath  isi  scopus
    6. Yu. Qin, Q. Lou, Zh. Wang, L. Zou, “Kudryashov and sinelshchikov's method for solving the radial oscillation problem of multielectron bubbles in liquid helium”, J. Math. Chem., 58:7 (2020), 1481–1488  crossref  mathscinet  zmath  isi  scopus
    7. A. A. Kosov, È. I. Semenov, “Exact solutions of the nonlinear diffusion equation”, Siberian Math. J., 60:1 (2019), 93–107  mathnet  crossref  crossref  isi  elib
    8. J. F. Carinena, P. Guha, “Nonstandard Hamiltonian structures of the Lienard equation and contact geometry”, Int. J. Geom. Methods Mod. Phys., 16:1, SI (2019), 1940001  crossref  mathscinet  zmath  isi  scopus
    9. Gabino Torres Vega, Nonlinear Optics - Novel Results in Theory and Applications, 2019  crossref
    10. V. F. Morales-Delgado, J. F. Gómez-Aguilar, L. Torres, R. F. Escobar-Jiménez, M. A. Taneco-Hernandez, Studies in Systems, Decision and Control, 194, Fractional Derivatives with Mittag-Leffler Kernel, 2019, 269  crossref
    11. Ivan R. Garashchuk, Dmitry I. Sinelshchikov, Nikolay A. Kudryashov, “Nonlinear Dynamics of a Bubble Contrast Agent Oscillating near an Elastic Wall”, Regul. Chaotic Dyn., 23:3 (2018), 257–272  mathnet  crossref  mathscinet  adsnasa
    12. I. Garashchuk, D. Sinelshchikov, N. Kudryashov, “General solution of the Rayleigh equation for the description of bubble oscillations near a wall”, Mathematical Modeling and Computational Physics 2017 (MMCP 2017), EPJ Web Conf., 173, eds. G. Adam, J. Busa, M. Hnatic, D. Podgainy, EDP Sciences, 2018, 03008  crossref  isi
    13. Ivan Garashchuk, Dmitry Sinelshchikov, Nikolay Kudryashov, Gh. Adam, J. Buša, M. Hnatič, D. Podgainy, “General Solution of the Rayleigh Equation for the Description of Bubble Oscillations Near a Wall”, EPJ Web Conf., 173 (2018), 03008  crossref
    14. D. I. Sinelshchikov, N. A. Kudryashov, “On the Jacobi last multipliers and Lagrangians for a family of Liénard-type equations”, Appl. Math. Comput., 307 (2017), 257–264  crossref  mathscinet  isi  scopus
    15. N. A. Kudryashov, D. I. Sinelshchikov, “On connections of the Lienard equation with some equations of Painlevé-Gambier type”, J. Math. Anal. Appl., 449:2 (2017), 1570–1580  crossref  mathscinet  zmath  isi  scopus
    16. C. Ozemir, “On some canonical classes of cubic-quintic nonlinear Schrodinger equations”, J. Math. Anal. Appl., 446:2 (2017), 1814–1832  crossref  mathscinet  zmath  isi  scopus
    17. D. I. Sinelshchikov, “On connections of the Lienard-type equations with type II Painlevé-Gambier equations”, Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2016 (ICNAAM-2016), AIP Conf. Proc., 1863, eds. T. Simos, C. Tsitouras, Amer. Inst. Phys., 2017, UNSP 380008-1  crossref  isi  scopus
    18. D. I. Sinelshchikov, N. A. Kudryashov, “On the general traveling wave solutions of some nonlinear diffusion equations”, V International Conference on Problems of Mathematical and Theoretical Physics and Mathematical Modelling, Journal of Physics Conference Series, 788, IOP Publishing Ltd, 2017, UNSP 012033  crossref  isi  scopus
    19. N. A. Kudryashov, D. I. Sinelshchikov, “New non-standard Lagrangians for the Lienard-type equations”, Appl. Math. Lett., 63 (2017), 124–129  crossref  mathscinet  zmath  isi  scopus
    20. N. A. Kudryashov, D. I. Sinelshchikov, “Analytical solutions of a nonlinear convection-diffusion equation with polynomial sources”, Automatic Control and Computer Sciences, 51:7 (2017), 621–626  mathnet  crossref  crossref  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:296
    References:80
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025