Loading [MathJax]/jax/output/SVG/config.js
Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2016, Volume 23, Number 3, Pages 309–316
DOI: https://doi.org/10.18255/1818-1015-2016-3-309-316
(Mi mais500)
 

This article is cited in 17 scientific papers (total in 17 papers)

Analytical solutions of a nonlinear convection-diffusion equation with polynomial sources

N. A. Kudryashov, D. I. Sinelshchikov

National Research Nuclear University MEPhI, Kashirskoe shosse, 31, Moscow, 115409, Russia
References:
Abstract: Nonlinear convection–diffusion equations are widely used for the description of various processes and phenomena in physics, mechanics and biology. In this work we consider a family of nonlinear ordinary differential equations which is a traveling wave reduction of a nonlinear convection–diffusion equation with a polynomial source. We study a question about integrability of this family of nonlinear ordinary differential equations. We consider both stationary and non–stationary cases of this equation with and without convection. In order to construct general analytical solutions of equations from this family we use an approach based on nonlocal transformations which generalize the Sundman transformations. We show that in the stationary case without convection the general analytical solution of the considered family of equations can be constructed without any constraints on its parameters and can be expressed via the Weierstrass elliptic function. Since in the general case this solution has a cumbersome form we find some correlations on the parameters which allow us to construct the general solution in the explicit form. We show that in the non–stationary case both with and without convection we can find a general analytical solution of the considered equation only imposing some correlation on the parameters. To this aim we use criteria for the integrability of the Lienard equation which have recently been obtained. We find explicit expressions in terms of exponential and elliptic functions for the corresponding analytical solutions.
Keywords: analytical solutions, elliptic function, nonlocal transformations, Liénard equations.
Funding agency Grant number
Russian Science Foundation 14-11-00258
This research was supported by Russian Science Foundation grant No. 14–11–00258.
Received: 30.05.2016
English version:
Automatic Control and Computer Sciences, 2017, Volume 51, Issue 7, Pages 621–626
DOI: https://doi.org/10.3103/S0146411617070148
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: N. A. Kudryashov, D. I. Sinelshchikov, “Analytical solutions of a nonlinear convection-diffusion equation with polynomial sources”, Model. Anal. Inform. Sist., 23:3 (2016), 309–316; Automatic Control and Computer Sciences, 51:7 (2017), 621–626
Citation in format AMSBIB
\Bibitem{KudSin16}
\by N.~A.~Kudryashov, D.~I.~Sinelshchikov
\paper Analytical solutions of a nonlinear convection-diffusion equation with polynomial sources
\jour Model. Anal. Inform. Sist.
\yr 2016
\vol 23
\issue 3
\pages 309--316
\mathnet{http://mi.mathnet.ru/mais500}
\crossref{https://doi.org/10.18255/1818-1015-2016-3-309-316}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3520852}
\elib{https://elibrary.ru/item.asp?id=26246296}
\transl
\jour Automatic Control and Computer Sciences
\yr 2017
\vol 51
\issue 7
\pages 621--626
\crossref{https://doi.org/10.3103/S0146411617070148}
Linking options:
  • https://www.mathnet.ru/eng/mais500
  • https://www.mathnet.ru/eng/mais/v23/i3/p309
  • This publication is cited in the following 17 articles:
    1. Jin Li, Yongling Cheng, “Spectral collocation method for convection-diffusion equation”, Demonstratio Mathematica, 57:1 (2024)  crossref
    2. A. L. Kazakov, O. A. Nefedova, L. F. Spevak, “Solution to a Two-Dimensional Nonlinear Parabolic Heat Equation Subject to a Boundary Condition Specified on a Moving Manifold”, Comput. Math. and Math. Phys., 64:2 (2024), 266  crossref
    3. Y. Acevedo, O. M. L. Duque, Danilo A. García Hernández, G. Loaiza, “Principal Algebra, Invariant Solutions and Representations for Optimal Systems of the Burgers–Huxley Equation”, Int. J. Appl. Comput. Math, 10:4 (2024)  crossref
    4. Jin Li, Saeid Abbasbandy, “Barycentric Rational Collocation Method for Nonlinear Heat Conduction Equation”, Journal of Applied Mathematics, 2022 (2022), 1  crossref
    5. A. L. Kazakov, P. A. Kuznetsov, “Analytical Solutions with Zero Front to the Nonlinear Degenerate Parabolic System”, Diff Equat, 58:11 (2022), 1457  crossref
    6. J. Li, Y. Cheng, “Linear barycentric rational collocation method for solving heat conduction equation”, Numer. Meth. Part Differ. Equ., 37:1 (2021), 533–545  crossref  mathscinet  isi  scopus
    7. A. L. Kazakov, P. A. Kuznetsov, L. F. Spevak, “Postroenie reshenii kraevoi zadachi s vyrozhdeniem dlya nelineinoi parabolicheskoi sistemy”, Sib. zhurn. industr. matem., 24:4 (2021), 64–78  mathnet  crossref
    8. A. L. Kazakov, P. A. Kuznetsov, L. F. Spevak, “Construction of Solutions to a Boundary Value Problem with Singularity for a Nonlinear Parabolic System”, J. Appl. Ind. Math., 15:4 (2021), 616  crossref
    9. A L Kazakov, A A Lempert, L F Spevak, “On an exact solution to the nonlinear heat equation with a source”, J. Phys.: Conf. Ser., 1847:1 (2021), 012006  crossref
    10. A. L. Kazakov, P. A. Kuznetsov, “Exact solutions of the nonlinear heat conduction model”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020), 33–47  mathnet  mathnet  crossref
    11. Alexander Kazakov, Pavel Kuznetsov, Anna Lempert, “Analytical Solutions to the Singular Problem for a System of Nonlinear Parabolic Equations of the Reaction-Diffusion Type”, Symmetry, 12:6 (2020), 999  crossref
    12. A. L. Kazakov, P. A. Kuznetsov, A. A. Lempert, Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy, 2020, 223  crossref
    13. A. A. Kosov, È. I. Semenov, “Exact solutions of the nonlinear diffusion equation”, Siberian Math. J., 60:1 (2019), 93–107  mathnet  crossref  crossref  isi  elib
    14. M. S. Cheichan, H. A. Kashkool, F. Gao, “A weak Galerkin finite element method for solving nonlinear convection-diffusion problems in two dimensions”, Appl. Math. Comput., 354 (2019), 149–163  crossref  mathscinet  zmath  isi  scopus
    15. A. L. Kazakov, “Construction and investigation of exact solutions with free boundary to a nonlinear heat equation with source”, Siberian Adv. Math., 30:2 (2020), 91–105  mathnet  mathnet  crossref  crossref  scopus
    16. A. L. Kazakov, P. A. Kuznetsov, L. F. Spevak, “Trekhmernaya teplovaya volna, porozhdennaya kraevym rezhimom, zadannym na podvizhnom mnogoobrazii”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 26 (2018), 16–34  mathnet  crossref
    17. N. A. Kudryashov, D. I. Sinelshchikov, “On the Integrability Conditions for a Family of Liénard-type Equations”, Regul. Chaotic Dyn., 21:5 (2016), 548–555  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:683
    Full-text PDF :326
    References:81
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025