Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2013, Volume 18, Issue 6, Pages 832–859
DOI: https://doi.org/10.1134/S1560354713060166
(Mi rcd171)
 

This article is cited in 61 scientific papers (total in 61 papers)

The Problem of Drift and Recurrence for the Rolling Chaplygin Ball

Alexey V. Borisovabc, Alexander A. Kilincab, Ivan S. Mamaevbac

a Institute of Computer Science, Udmurt State University, Universitetskaya 1, Izhevsk, 426034 Russia
b A. A. Blagonravov Mechanical Engineering Research Institute of RAS, Bardina str. 4, Moscow, 117334 Russia
c Institute of Mathematics and Mechanics of the Ural Branch of RAS, S. Kovalevskaja str. 16, Ekaterinburg, 620990 Russia
Citations (61)
References:
Abstract: We investigate the motion of the point of contact (absolute dynamics) in the integrable problem of the Chaplygin ball rolling on a plane. Although the velocity of the point of contact is a given vector function of variables of the reduced system, it is impossible to apply standard methods of the theory of integrable Hamiltonian systems due to the absence of an appropriate conformally Hamiltonian representation for an unreduced system. For a complete analysis we apply the standard analytical approach, due to Bohl and Weyl, and develop topological methods of investigation. In this way we obtain conditions for boundedness and unboundedness of the trajectories of the contact point.
Keywords: nonholonomic constraint, absolute dynamics, bifurcation diagram, bifurcation complex, drift, resonance, invariant torus.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.1248.2011
1.7734.2013
MD-2324.2013.1
Russian Foundation for Basic Research 13-01-12462-ofi_m
This research was supported by the Target Programmes for 2012–2014 (State contract 1.1248.2011, 1.7734.2013) and grant RFBR 13-01-12462-ofi_m. A. A. Kilin’s research was supported by the grant of the President of the Russian Federation for the Support of Young Russian Scientists–Doctors of Science (MD-2324.2013.1).
Received: 19.09.2013
Accepted: 11.11.2013
Bibliographic databases:
Document Type: Article
Language: English
Citation: Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “The Problem of Drift and Recurrence for the Rolling Chaplygin Ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859
Citation in format AMSBIB
\Bibitem{BorKilMam13}
\by Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev
\paper The Problem of Drift and Recurrence for the Rolling Chaplygin Ball
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 6
\pages 832--859
\mathnet{http://mi.mathnet.ru/rcd171}
\crossref{https://doi.org/10.1134/S1560354713060166}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3146594}
\zmath{https://zbmath.org/?q=an:1286.70007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329108900016}
Linking options:
  • https://www.mathnet.ru/eng/rcd171
  • https://www.mathnet.ru/eng/rcd/v18/i6/p832
  • This publication is cited in the following 61 articles:
    1. E. A. Mikishanina, “Two Ways to Control a Pendulum-Type Spherical Robot on a Moving Platform in a Pursuit Problem”, Mech. Solids, 59:1 (2024), 127  crossref
    2. E. A. Mikishanina, “Two Ways to Control a Pendulum-Type Spherical Robot on a Moving Platform in a Pursuit Problem”, Izvestiâ Rossijskoj akademii nauk. Mehanika tverdogo tela, 2024, no. 1, 230  crossref
    3. Ivan A. Bizyaev, Ivan S. Mamaev, “Roller Racer with Varying Gyrostatic Momentum: Acceleration Criterion and Strange Attractors”, Regul. Chaotic Dyn., 28:1 (2023), 107–130  mathnet  crossref  mathscinet
    4. E. A. Mikishanina, “Nonholonomic mechanical systems on a plane with a variable slope”, Zhurnal SVMO, 25:4 (2023), 326–341  mathnet  mathnet  crossref
    5. E. A. Mikishanina, “Rolling motion dynamics of a spherical robot with a pendulum actuator controlled by the Bilimovich servo-constraint”, Theoret. and Math. Phys., 211:2 (2022), 679–691  mathnet  crossref  crossref  mathscinet  adsnasa
    6. E. A. Mikishanina, “Motion Control of a Spherical Robot with a Pendulum Actuator for Pursuing a Target”, Rus. J. Nonlin. Dyn., 18:5 (2022), 899–913  mathnet  crossref  mathscinet
    7. Alexander A. Kilin, Elena N. Pivovarova, “Motion control of the spherical robot rolling on a vibrating plane”, Applied Mathematical Modelling, 109 (2022), 492  crossref
    8. Alexander A. Kilin, Elena N. Pivovarova, “A Particular Integrable Case in the Nonautonomous Problem of a Chaplygin Sphere Rolling on a Vibrating Plane”, Regul. Chaotic Dyn., 26:6 (2021), 775–786  mathnet  crossref
    9. Alexey V. Borisov, Evgeniya A. Mikishanina, “Two Nonholonomic Chaotic Systems. Part II. On the Rolling of a Nonholonomic Bundle of Two Bodies”, Regul. Chaotic Dyn., 25:4 (2020), 392–400  mathnet  crossref  mathscinet
    10. A. V. Borisov, E. A. Mikishanina, “Dynamics of the Chaplygin Ball with Variable Parameters”, Rus. J. Nonlin. Dyn., 16:3 (2020), 453–462  mathnet  crossref  mathscinet
    11. Bizyaev I.A. Mamaev I.S., “Separatrix Splitting and Nonintegrability in the Nonholonomic Rolling of a Generalized Chaplygin Sphere”, Int. J. Non-Linear Mech., 126 (2020), 103550  crossref  mathscinet  isi  scopus
    12. Putkaradze V. Rogers S., “on the Optimal Control of a Rolling Ball Robot Actuated By Internal Point Masses”, J. Dyn. Syst. Meas. Control-Trans. ASME, 142:5 (2020)  crossref  isi  scopus
    13. Alexander A. Kilin, Elena N. Pivovarova, “Qualitative Analysis of the Nonholonomic Rolling of a Rubber Wheel with Sharp Edges”, Regul. Chaotic Dyn., 24:2 (2019), 212–233  mathnet  crossref
    14. Ivan Yu. Polekhin, “Precession of the Kovalevskaya and Goryachev – Chaplygin Tops”, Regul. Chaotic Dyn., 24:3 (2019), 281–297  mathnet  crossref  mathscinet
    15. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582  mathnet  crossref  mathscinet
    16. Borisov A. Kilin A. Mamaev I., “Invariant Submanifolds of Genus 5 and a Cantor Staircase in the Nonholonomic Model of a Snakeboard”, Int. J. Bifurcation Chaos, 29:3 (2019), 1930008  crossref  mathscinet  zmath  isi  scopus
    17. Alexander A. Kilin, Elena N. Pivovarova, “Integrable Nonsmooth Nonholonomic Dynamics of a Rubber Wheel with Sharp Edges”, Regul. Chaotic Dyn., 23:7-8 (2018), 887–907  mathnet  crossref  mathscinet
    18. V. Putkaradze, S. Rogers, “On the dynamics of a rolling ball actuated by internal point masses”, Meccanica, 53:15 (2018), 3839–3868  crossref  mathscinet  isi  scopus
    19. I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Dynamics of the Chaplygin ball on a rotating plane”, Russ. J. Math. Phys., 25:4 (2018), 423–433  crossref  mathscinet  zmath  isi  scopus
    20. Alexander A. Kilin, Elena N. Pivovarova, “The Rolling Motion of a Truncated Ball Without Slipping and Spinning on a Plane”, Regul. Chaotic Dyn., 22:3 (2017), 298–317  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:384
    References:94
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025