Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2020, Volume 25, Issue 3, Pages 273–280
DOI: https://doi.org/10.1134/S156035472003003X
(Mi rcd1063)
 

This article is cited in 4 scientific papers (total in 4 papers)

Rational Solutions of Equations Associated with the Second Painlevé Equation

Nikolay A. Kudryashov

Department of Applied Mathematics, National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow, 115409 Russia
Citations (4)
References:
Abstract: Nonlinear differential equations associated with the second Painlevé equation are considered. Transformations for solutions of the singular manifold equation are presented. It is shown that rational solutions of the singular manifold equation are determined by means of the Yablonskii – Vorob'ev polynomials. It is demonstrated that rational solutions for some differential equations are also expressed via the Yablonskii – Vorob'ev polynomials.
Keywords: second Painlevé equation, Painlevé test, Yablonskii – Vorob'ev polynomials, rational solution.
Funding agency Grant number
Russian Foundation for Basic Research 18-29-10025
This reported study was funded by the Russian Foundation for Basic Research (RFBR) according to the research project No. 18-29-10025.
Received: 04.02.2020
Accepted: 11.03.2020
Bibliographic databases:
Document Type: Article
MSC: 34M55
Language: English
Citation: Nikolay A. Kudryashov, “Rational Solutions of Equations Associated with the Second Painlevé Equation”, Regul. Chaotic Dyn., 25:3 (2020), 273–280
Citation in format AMSBIB
\Bibitem{Kud20}
\by Nikolay A. Kudryashov
\paper Rational Solutions of Equations Associated with the Second Painlevé Equation
\jour Regul. Chaotic Dyn.
\yr 2020
\vol 25
\issue 3
\pages 273--280
\mathnet{http://mi.mathnet.ru/rcd1063}
\crossref{https://doi.org/10.1134/S156035472003003X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000536729000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085544274}
Linking options:
  • https://www.mathnet.ru/eng/rcd1063
  • https://www.mathnet.ru/eng/rcd/v25/i3/p273
  • This publication is cited in the following 4 articles:
    1. Sandeep Malik, Sachin Kumar, Anjan Biswas, Yakup Y{\i}ld{\i}r{\i}m, Luminita Moraru, Simona Moldovanu, Catalina Iticescu, Seithuti P. Moshokoa, Dorin Bibicu, Abdulaziz Alotaibi, “Gap Solitons in Fiber Bragg Gratings Having Polynomial Law of Nonlinear Refractive Index and Cubic–Quartic Dispersive Reflectivity by Lie Symmetry”, Symmetry, 15:5 (2023), 963  crossref
    2. Anjan Biswas, Jose Vega-Guzman, Abdul H. Kara, Salam Khan, Houria Triki, O. González-Gaxiola, Luminita Moraru, Puiu Lucian Georgescu, “Optical Solitons and Conservation Laws for the Concatenation Model: Undetermined Coefficients and Multipliers Approach”, Universe, 9:1 (2022), 15  crossref
    3. Anjan Biswas, Abdul H. Kara, Mehmet Ekici, Elsayed M. E. Zayed, Abdullah K. Alzahrani, Milivoj R. Belic, “Conservation Laws for Solitons in Magneto-optic Waveguides with Anti-cubic and Generalized Anti-cubic Nonlinearities”, Regul. Chaotic Dyn., 26:4 (2021), 456–461  mathnet  crossref
    4. E. M. E. Zayed, M. E. M. Alngar, R. M. A. Shohib, S. Khan, A. Biswas, A. Dakova, A. Kh. Alzahrani, M. R. Belic, “Optical soliton perturbation with Kudryashov's law of refractive index by modified sub-ODE approach”, J. Nonlinear Opt. Phys. Mater., 30:01N02 (2021), 2150004  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:161
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025