Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2020, Volume 25, Issue 3, Pages 250–272
DOI: https://doi.org/10.1134/S1560354720030028
(Mi rcd1062)
 

On the Convex Central Configurations of the Symmetric $(l+2)$-body Problem

Montserrat Corberaa, Jaume Llibreb, Pengfei Yuanc

a Departament d’Enginyeries, Universitat de Vic-Universitat Central de Catalunya, 08500 Vic, Barcelona, Spain
b Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
c School of Mathematics and Statistics, Southwest University, 400715, Chongqing, China
References:
Abstract: For the $4$-body problem there is the following conjecture: Given arbitrary positive masses, the planar $4$-body problem has a unique convex central configuration for each ordering of the masses on its convex hull. Until now this conjecture has remained open. Our aim is to prove that this conjecture cannot be extended to the $(\ell+2)$-body problem with $\ell \geqslant 3$. In particular, we prove that the symmetric $(2n+1)$-body problem with masses $m_1=\ldots=m_{2n-1}=1$ and $m_{2n}=m_{2n+1}=m$ sufficiently small has at least two classes of convex central configuration when $n=2$, five when $n=3$, and four when $n=4$. We conjecture that the $(2n+1)$-body problem has at least $n $ classes of convex central configurations for $n>4$ and we give some numerical evidence that the conjecture can be true. We also prove that the symmetric $(2n+2)$-body problem with masses $m_1=\ldots=m_{2n}=1$ and $m_{2n+1}=m_{2n+2}=m$ sufficiently small has at least three classes of convex central configuration when $n=3$, two when $n=4$, and three when $n=5$. We also conjecture that the $(2n+2)$-body problem has at least $[(n+1)/2]$ classes of convex central configurations for $n>5$ and we give some numerical evidences that the conjecture can be true.
Keywords: convex central configurations, $(l+2)$-body problem.
Funding agency Grant number
Federación Española de Enfermedades Raras MTM2016-77278-P
Agència de Gestiö d'Ajuts Universitaris i de Recerca 2017SGR1617
European Research Council MSCA-RISE-2017- 777911
Fundamental Research Funds for the Central Universities of China XDJK2015C139
China Scholarship Council 201708505030
National Natural Science Foundation of China 11626193
The first two authors are partially supported by the Ministerio de Economí:a, Industria y Competitividad, Agencia Estatal de Investigación grants MTM2016-77278-P (FEDER). The second author is also partially supported by the Agència de Gestió d’Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020 European Research Council grant MSCA-RISE-2017- 777911. The third author is partially supported by Fundamental Research Funds for the Central Universities (NO.XDJK2015C139), China Scholarship Council (No. 201708505030), the National Natural Science Foundation of China (grant No. 11626193).
Received: 22.01.2020
Accepted: 26.04.2020
Bibliographic databases:
Document Type: Article
MSC: 70F10, 70F15
Language: English
Citation: Montserrat Corbera, Jaume Llibre, Pengfei Yuan, “On the Convex Central Configurations of the Symmetric $(l+2)$-body Problem”, Regul. Chaotic Dyn., 25:3 (2020), 250–272
Citation in format AMSBIB
\Bibitem{CorLliYua20}
\by Montserrat Corbera, Jaume Llibre, Pengfei Yuan
\paper On the Convex Central Configurations of the Symmetric $(l+2)$-body Problem
\jour Regul. Chaotic Dyn.
\yr 2020
\vol 25
\issue 3
\pages 250--272
\mathnet{http://mi.mathnet.ru/rcd1062}
\crossref{https://doi.org/10.1134/S1560354720030028}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4105203}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000536729000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085885534}
Linking options:
  • https://www.mathnet.ru/eng/rcd1062
  • https://www.mathnet.ru/eng/rcd/v25/i3/p250
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:110
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025