Abstract:
For linear combinations of coordinate functions of mapping from the vectorspace Vn of all binary vectors of length n to the vectorspace Vm, recursive formulas for the distribution of weights of some their subfunctions wJI and for the distribution of subsets of their spectral coefficients ΔJI are obtained. By mean of these formulas, we obtain the recursive formula for the
number of correlation-immune of order k mappings
and the recursive formula for the number of (n,m,k)-resilient Boolean mappings.
Citation:
K. N. Pankov, “Recursion Formulas for the number of (n,m,k)-resilient and correlation-immune Boolean mappings”, Prikl. Diskr. Mat. Suppl., 2019, no. 12, 62–66
\Bibitem{Pan19}
\by K.~N.~Pankov
\paper Recursion Formulas for the number of $(n, m, k)$-resilient and correlation-immune Boolean mappings
\jour Prikl. Diskr. Mat. Suppl.
\yr 2019
\issue 12
\pages 62--66
\mathnet{http://mi.mathnet.ru/pdma434}
\crossref{https://doi.org/10.17223/2226308X/12/19}
\elib{https://elibrary.ru/item.asp?id=41153872}
Linking options:
https://www.mathnet.ru/eng/pdma434
https://www.mathnet.ru/eng/pdma/y2019/i12/p62
This publication is cited in the following 2 articles:
O. V. Kamlovskii, K. N. Pankov, “Some Classes of Balanced Functions over Finite Fields with a Small Value of the Linear Characteristic”, Probl Inf Transm, 58:4 (2022), 389
K. N. Pankov, “Uluchshennye otsenki dlya chisla k-elastichnykh i korrelyatsionno-immunnykh dvoichnykh otobrazhenii”, PDM. Prilozhenie, 2021, no. 14, 48–51