|
Discrete Functions
Improved estimates for the number of (n,m,k)-resilient and correlation-immune Boolean mappings
K. N. Pankov Moscow Technical University of Communications and Informatics
Abstract:
Improved lower and upper bounds for |K(n,m,k)| (the number of correlation-immune of order k binary mappings) and |R(m,n,k)| (the number of (n,m,k)-resilient binary mappings) are obtained. By M(n,k) we denote k∑s=0(ns), and by T(n,m,k) — the expression (2m−1)(n−k2(nk)+M(n,k)log2√π2). If m≥5 and k(5+2log2n)+6m⩽ for fixed 0<\gamma <{1}/{3}, then there is n_0 such that, for any \varepsilon_1,\varepsilon_2 and n>n_0, \left( \frac{{{m^2} - m - 12}}{2} + 17 \right)M\left( {n,k} \right)- {\varepsilon _1} \le \log _2\left| {R\left({n,m,k} \right)} \right|-m2^n+T\left( {n,m,k} \right)\le \le \left( {\left( {16m - 47} \right){2^{m - 4}} - m + 3} \right)M\left( {n,k} \right)+{\varepsilon _2}. If m\geq 5 and k\left( 5+2{{\log }_{2}}n \right)+6m\le n\left( {5}/{18}-\gamma \right) for fixed 0<\gamma <{5}/{18}, then there is n_0 such that, for any \varepsilon_1,\varepsilon_2 and n>n_0, \left( \frac{{{m^2} - m - 12}}{2} + 17 \right)M\left( {n,k} \right)- {\varepsilon _1} \le \log _2\left| {K\left({n,m,k} \right)} \right|-m2^n+m2^{m-1}+T\left( {n,m,k} \right)- -{\left( {\frac{n+1+\log _2 \pi }{2}-k} \right)\left( {2^m-1} \right)}\le \left( {\left( {16m - 47} \right){2^{m - 4}} - m + 3} \right)M\left( {n,k} \right)+{\varepsilon _2}.
Keywords:
distributed ledger, blockchain, information security, resilient vectorial Boolean function, correlation-immune function.
Citation:
K. N. Pankov, “Improved estimates for the number of (n, m, k)-resilient and correlation-immune Boolean mappings”, Prikl. Diskr. Mat. Suppl., 2021, no. 14, 48–51
Linking options:
https://www.mathnet.ru/eng/pdma528 https://www.mathnet.ru/eng/pdma/y2021/i14/p48
|
Statistics & downloads: |
Abstract page: | 141 | Full-text PDF : | 51 | References: | 28 |
|