Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2016, Volume 12, Number 1, Pages 121–143 (Mi nd516)  

This article is cited in 9 scientific papers (total in 9 papers)

Translated papers

Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories

S. P. Kuznetsovab

a Kotel’nikov’s Institute of Radio Engineering and Electronics of RAS, Saratov Branch, 410019 Saratov, Zelenaya 38, Russian Federation
b Udmurt State University, Universitetskaya 1, Izhevsk, 426034 Russia
References:
Abstract: Dynamical equations are formulated and a numerical study is provided for selfoscillatory model systems based on the triple linkage hinge mechanism of Thurston–Weeks–Hunt–MacKay. We consider systems with a holonomic mechanical constraint of three rotators as well as systems, where three rotators interact by potential forces. We present and discuss some quantitative characteristics of the chaotic regimes (Lyapunov exponents, power spectrum). Chaotic dynamics of the models we consider are associated with hyperbolic attractors, at least, at relatively small supercriticality of the self-oscillating modes; that follows from numerical analysis of the distribution for angles of intersection of stable and unstable manifolds of phase trajectories on the attractors. In systems based on rotators with interacting potential the hyperbolicity is violated starting from a certain level of excitation.
Keywords: dynamical system, chaos, hyperbolic attractor, Anosov dynamics, rotator, Lyapunov exponent, self-oscillator.
Funding agency Grant number
Russian Science Foundation 15-12-20035
Received: 28.09.2015
Revised: 30.10.2015
English version:
Regular and Chaotic Dynamics, 2015, Volume 20, Issue 6, Pages 649–666
DOI: https://doi.org/10.1134/S1560354715060027
Bibliographic databases:
Document Type: Article
UDC: 51-72, 514.85, 517.9, 534.1
Language: Russian
Citation: S. P. Kuznetsov, “Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories”, Nelin. Dinam., 12:1 (2016), 121–143; Regular and Chaotic Dynamics, 20:6 (2015), 649–666
Citation in format AMSBIB
\Bibitem{Kuz16}
\by S.~P.~Kuznetsov
\paper Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories
\jour Nelin. Dinam.
\yr 2016
\vol 12
\issue 1
\pages 121--143
\mathnet{http://mi.mathnet.ru/nd516}
\transl
\jour Regular and Chaotic Dynamics
\yr 2015
\vol 20
\issue 6
\pages 649--666
\crossref{https://doi.org/10.1134/S1560354715060027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84948967074}
Linking options:
  • https://www.mathnet.ru/eng/nd516
  • https://www.mathnet.ru/eng/nd/v12/i1/p121
  • This publication is cited in the following 9 articles:
    1. Nozomi Akashi, Kohei Nakajima, Mitsuru Shibayama, Yasuo Kuniyoshi, “A mechanical true random number generator”, New J. Phys., 24:1 (2022), 013019  crossref
    2. Sergey P. Kuznetsov, Vyacheslav P. Kruglov, “Hyperbolic chaos in a system of two Froude pendulums with alternating periodic braking”, Communications in Nonlinear Science and Numerical Simulation, 67 (2019), 152  crossref
    3. S. P. Kuznetsov, “Khaos i giperkhaos geodezicheskikh potokov na mnogoobraziyakh s kriviznoi, otvechayuschikh mekhanicheski svyazannym rotatoram: primery i chislennoe issledovanie”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:4 (2018), 565–581  mathnet  crossref  elib
    4. Pavel V. Kuptsov, Sergey P. Kuznetsov, “Numerical test for hyperbolicity in chaotic systems with multiple time delays”, Communications in Nonlinear Science and Numerical Simulation, 56 (2018), 227  crossref
    5. S. P. Kuznetsov, V. P. Kruglov, “On some simple examples of mechanical systems with hyperbolic chaos”, Proc. Steklov Inst. Math., 297 (2017), 208–234  mathnet  crossref  crossref  mathscinet  isi  elib
    6. S. P. Kuznetsov, “Ot dinamiki Anosova na poverkhnosti otritsatelnoi krivizny k elektronnomu generatoru grubogo khaosa”, Izv. Sarat. un-ta. Nov. cer. Ser. Fizika, 16:3 (2016), 131–144  mathnet  crossref
    7. Pavel V. Kuptsov, Sergey P. Kuznetsov, “Numerical test for hyperbolicity of chaotic dynamics in time-delay systems”, Phys. Rev. E, 94:1 (2016)  crossref
    8. Sergey P. Kuznetsov, “From Geodesic Flow on a Surface of Negative Curvature to Electronic Generator of Robust Chaos”, Int. J. Bifurcation Chaos, 26:14 (2016), 1650232  crossref
    9. Sergey P. Kuznetsov, Vyacheslav P. Kruglov, “Verification of Hyperbolicity for Attractors of Some Mechanical Systems with Chaotic Dynamics”, Regul. Chaotic Dyn., 21:2 (2016), 160–174  mathnet  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:396
    Full-text PDF :180
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025