Loading [MathJax]/jax/output/SVG/config.js
Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2016, Volume 12, Number 1, Pages 99–120 (Mi nd515)  

This article is cited in 6 scientific papers (total in 6 papers)

Original papers

Chaotic dynamics in the problem of the fall of a screw-shaped body in a fluid

V. A. Teneneva, E. V. Vetchaninba, L. Ilaletdinova

a Izhevsk State Technical University, Studencheskaya 7, Izhevsk, 426069 Russia
b Udmurt State University, Universitetskaya 1, Izhevsk, 426034 Russia
References:
Abstract: This paper is concerned with the process of the free fall of a three-bladed screw in a fluid. The investigation is performed within the framework of theories of an ideal fluid and a viscous fluid. For the case of an ideal fluid the stability of uniformly accelerated rotations (the Steklov solutions) is studied. A phenomenological model of viscous forces and torques is derived for investigation of the motion in a viscous fluid. A chart of Lyapunov exponents and bifucation diagrams are computed. It is shown that, depending on the system parameters, quasiperiodic and chaotic regimes of motion are possible. Transition to chaos occurs through cascade of period-doubling bifurcations.
Keywords: ideal fluid, viscous fluid, motion of a rigid body, dynamical system, stability of motion, bifurcations, chart of Lyapunov exponents.
Funding agency Grant number
Russian Foundation for Basic Research 15-08-09093-а
15-38-20879 мол_а_вед
14-01-00395-а
Received: 10.02.2016
Revised: 04.03.2016
Document Type: Article
UDC: 532.3
MSC: 70E15, 65Pxx
Language: Russian
Citation: V. A. Tenenev, E. V. Vetchanin, L. Ilaletdinov, “Chaotic dynamics in the problem of the fall of a screw-shaped body in a fluid”, Nelin. Dinam., 12:1 (2016), 99–120
Citation in format AMSBIB
\Bibitem{TenVetIla16}
\by V.~A.~Tenenev, E.~V.~Vetchanin, L.~Ilaletdinov
\paper Chaotic dynamics in the problem of the fall of a screw-shaped body in a fluid
\jour Nelin. Dinam.
\yr 2016
\vol 12
\issue 1
\pages 99--120
\mathnet{http://mi.mathnet.ru/nd515}
Linking options:
  • https://www.mathnet.ru/eng/nd515
  • https://www.mathnet.ru/eng/nd/v12/i1/p99
  • This publication is cited in the following 6 articles:
    1. I. S. Mamaev, V. A. Tenenev, E. V. Vetchanin, “Dynamics of a Body with a Sharp Edge in a Viscous Fluid”, Nelin. Dinam., 14:4 (2018), 473–494  mathnet  crossref  elib
    2. E. V. Vetchanin, V. A. Tenenev, A. A. Kilin, “Optimalnoe upravlenie dvizheniem v idealnoi zhidkosti tela s vintovoi simmetriei s vnutrennimi rotorami”, Kompyuternye issledovaniya i modelirovanie, 9:5 (2017), 741–759  mathnet  crossref
    3. E. V. Vetchanin, A. I. Klenov, “Eksperimentalnye issledovaniya padeniya vintovykh tel v zhidkosti”, Nelineinaya dinam., 13:4 (2017), 585–598  mathnet  crossref  elib
    4. E. V. Vetchanin, A. A. Kilin, “Controlled motion of a rigid body with internal mechanisms in an ideal incompressible fluid”, Proc. Steklov Inst. Math., 295 (2016), 302–332  mathnet  crossref  crossref  mathscinet  isi  elib
    5. Evgeny V. Vetchanin, Alexander A. Kilin, Ivan S. Mamaev, “Control of the Motion of a Helical Body in a Fluid Using Rotors”, Regul. Chaotic Dyn., 21:7-8 (2016), 874–884  mathnet  crossref
    6. E. V. Vetchanin, A. A. Kilin, “Upravlenie dvizheniem neuravnoveshennogo tyazhelogo ellipsoida v zhidkosti s pomoschyu rotorov”, Nelineinaya dinam., 12:4 (2016), 663–674  mathnet  crossref  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:365
    Full-text PDF :104
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025