Loading [MathJax]/jax/output/SVG/config.js
Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2012, Volume 8, Number 4, Pages 735–762 (Mi nd357)  

This article is cited in 14 scientific papers (total in 14 papers)

Phenomena of nonlinear dynamics of dissipative systems in nonholonomic mechanics of the rattleback

Sergey P. Kuznetsov, Alexey Yu. Jalnine, Igor R. Sataev, Julia V. Sedova

Saratov Branch of Kotelnikov's Institute of Radio-Engineering and Electronics of RAS, Zelenaya 38, Saratov, 410019, Russia
References:
Abstract: We perform a numerical study of the motion of the rattleback, a rigid body with a convex surface on a rough horizontal plane in dependence on the parameters, applying the methods used previously for the treatment of dissipative dynamical systems, and adapted for the nonholonomic model. Charts of dynamical regimes are presented on the parameter plane of the total mechanical energy and the angle between the geometric and dynamic principal axes of the rigid body. Presence of characteristic structures in the parameter space, previously observed only for dissipative systems, is demonstrated. A method of calculating for the full spectrum of Lyapunov exponents is developed and implemented. It is shown that analysis of the Lyapunov exponents of chaotic regimes of the nonholonomic model reveals two classes, one of which is typical for relatively high energies, and the second for the relatively small energies. For the model reduced to a three-dimensional map, the first one corresponds to a strange attractor with one positive and two negative Lyapunov exponents, and the second to the chaotic dynamics of the quasi-conservative type, with close in magnitude positive and negative Lyapunov exponents, and the rest one about zero. The transition to chaos through a sequence of period-doubling bifurcations is illustrated, and the observed scaling corresponds to that intrinsic to the dissipative systems. A study of strange attractors is provided, in particularly, phase portraits are presented as well as the Lyapunov exponents, the Fourier spectra, the results of calculating the fractal dimensions.
Keywords: rattleback, rigid body dynamics, nonholonomic mechanics, strange attractor, Lyapunov exponents, bifurcation, fractal dimension.
Received: 09.09.2012
Revised: 16.10.2012
Document Type: Article
UDC: 517.925 + 517.93
MSC: 37J60, 37N15, 37G35
Language: Russian
Citation: Sergey P. Kuznetsov, Alexey Yu. Jalnine, Igor R. Sataev, Julia V. Sedova, “Phenomena of nonlinear dynamics of dissipative systems in nonholonomic mechanics of the rattleback”, Nelin. Dinam., 8:4 (2012), 735–762
Citation in format AMSBIB
\Bibitem{KuzJalSat12}
\by Sergey~P.~Kuznetsov, Alexey~Yu.~Jalnine, Igor~R.~Sataev, Julia~V.~Sedova
\paper Phenomena of nonlinear dynamics of dissipative systems in nonholonomic mechanics of the rattleback
\jour Nelin. Dinam.
\yr 2012
\vol 8
\issue 4
\pages 735--762
\mathnet{http://mi.mathnet.ru/nd357}
Linking options:
  • https://www.mathnet.ru/eng/nd357
  • https://www.mathnet.ru/eng/nd/v8/i4/p735
  • This publication is cited in the following 14 articles:
    1. S. V. Gonchenko, A. S. Gonchenko, A. O. Kazakov, E. A. Samylina, “Smeshannaya dinamika: elementy teorii i primery”, Izvestiya vuzov. PND, 32:6 (2024), 722–765  mathnet  crossref
    2. Gonchenko S.V., “Three Forms of Dynamical Chaos”, Radiophys. Quantum Electron., 63:9-10 (2021), 756–775  crossref  isi  scopus
    3. S. V. Gonchenko, A. S. Gonchenko, A. O. Kazakov, “Three Types of Attractors and Mixed Dynamics of Nonholonomic Models of Rigid Body Motion”, Proc. Steklov Inst. Math., 308 (2020), 125–140  mathnet  crossref  crossref  mathscinet  isi  elib
    4. Gonchenko A.S. Samylina E.A., “on the Region of Existence of a Discrete Lorenz Attractor in the Nonholonomic Model of a Celtic Stone”, Radiophys. Quantum Electron., 62:5 (2019), 369–384  crossref  isi  scopus
    5. Gonchenko A.S. Gonchenko S.V. Kazakov A.O. Samylina E.A., “Chaotic Dynamics and Multistability in the Nonholonomic Model of a Celtic Stone”, Radiophys. Quantum Electron., 61:10 (2019), 773–786  crossref  isi  scopus
    6. S. P. Kuznetsov, “Giperbolicheskii khaos v avtokolebatelnykh sistemakh na osnove troinogo sharnirnogo mekhanizma: Proverka otsutstviya kasanii ustoichivykh i neustoichivykh mnogoobrazii fazovykh traektorii”, Nelineinaya dinam., 12:1 (2016), 121–143  mathnet
    7. A. P. Kuznetsov, S. P. Kuznetsov, Yu. V. Sedova, “Mayatnikovaya sistema s beskonechnym chislom sostoyanii ravnovesiya i kvaziperiodicheskoi dinamikoi”, Nelineinaya dinam., 12:2 (2016), 223–234  mathnet  elib
    8. E. V. Vetchanin, A. O. Kazakov, “Bifurkatsii i khaos v zadache o dvizhenii dvukh tochechnykh vikhrei v akusticheskoi volne”, Nelineinaya dinam., 10:3 (2014), 329–343  mathnet
    9. A. V. Borisov, A. O. Kazakov, I. R. Sataev, “Regulyarnye i khaoticheskie attraktory v negolonomnoi modeli volchka Chaplygina”, Nelineinaya dinam., 10:3 (2014), 361–380  mathnet
    10. D. I. Popov, R. M. Utemesov, “Malomodovoe priblizhenie v zadache Benara-Releya dlya dvukhfaznoi smesi”, Izvestiya Altaiskogo gosudarstvennogo universiteta, 2014, no. 1-1 (81), 231–235  elib
    11. A. S. Gonchenko, S. V. Gonchenko, “O suschestvovanii attraktorov lorentsevskogo tipa v negolonomnoi modeli «keltskogo kamnya»”, Nelineinaya dinam., 9:1 (2013), 77–89  mathnet
    12. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Ierarkhiya dinamiki pri kachenii tverdogo tela bez proskalzyvaniya i vercheniya po ploskosti i sfere”, Nelineinaya dinam., 9:2 (2013), 141–202  mathnet
    13. A. O. Kazakov, “Fenomeny khaoticheskoi dinamiki v zadache o kachenii rok-n-rollera bez vercheniya”, Nelineinaya dinam., 9:2 (2013), 309–325  mathnet
    14. A. S. Gonchenko, “Ob attraktorakh lorentsevskogo tipa v modeli keltskogo kamnya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 2, 3–11  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:518
    Full-text PDF :233
    References:95
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025