Abstract:
We describe the asymptotics of the spectrum of the operator
$$
\widehat H\biggl(x,-\imath h\frac{\partial}{\partial x}\biggr)=-h^2\frac{\partial^2}{\partial x^2}+\imath(\cos x+\cos2x)
$$
as $h\to0$ and show that the spectrum concentrates near some graph on the complex plane. We obtain equations for the eigenvalues, which are conditions on the periods of a holomorphic form on the corresponding Riemannian surface.
Keywords:
Schrödinger operator, semiclassical spectrum of an operator, Riemannian surface, quantization condition, holomorphic form, Stokes line, monodromy matrix, turning point.
Citation:
A. I. Esina, A. I. Shafarevich, “Quantization Conditions on Riemannian Surfaces and the Semiclassical Spectrum of the Schrödinger Operator with Complex Potential”, Mat. Zametki, 88:2 (2010), 229–248; Math. Notes, 88:2 (2010), 209–227
\Bibitem{EsiSha10}
\by A.~I.~Esina, A.~I.~Shafarevich
\paper Quantization Conditions on Riemannian Surfaces and the Semiclassical Spectrum of the Schr\"odinger Operator with Complex Potential
\jour Mat. Zametki
\yr 2010
\vol 88
\issue 2
\pages 229--248
\mathnet{http://mi.mathnet.ru/mzm8803}
\crossref{https://doi.org/10.4213/mzm8803}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2867051}
\elib{https://elibrary.ru/item.asp?id=15319841}
\transl
\jour Math. Notes
\yr 2010
\vol 88
\issue 2
\pages 209--227
\crossref{https://doi.org/10.1134/S0001434610070205}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000284088200020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956490304}
Linking options:
https://www.mathnet.ru/eng/mzm8803
https://doi.org/10.4213/mzm8803
https://www.mathnet.ru/eng/mzm/v88/i2/p229
This publication is cited in the following 16 articles:
D.I. Borisov, D.M. Polyakov, “Uniform Spectral Asymptotics for a Schrödinger Operator on a Segment with Delta-Interaction”, Russ. J. Math. Phys., 31:2 (2024), 149
A.A. Arzhanov, S.A. Stepin, V.A. Titov, V.V. Fufaev, “Stokes Phenomenon and Spectral Locus in a Problem of Singular Perturbation Theory”, Russ. J. Math. Phys., 31:3 (2024), 351
Stepin S.A., Fufaev V.V., “Wkb Asymptotics and Spectral Deformation in Semi-Classical Limit”, J. Dyn. Control Syst., 26:1 (2020), 175–198
Stepin S.A., Fufaev V.V., “Spectral Deformation in a Problem of Singular Perturbation Theory”, Dokl. Math., 99:1 (2019), 60–63
Shafarevich A., “Quantization Conditions on Riemannian Surfaces and Spectral Series of Non-Selfadjoint Operators”, Formal and Analytic Solutions of Diff. Equations, Springer Proceedings in Mathematics & Statistics, 256, ed. Filipuk G. Lastra A. Michalik S., Springer, 2018, 177–187
A. A. Shkalikov, S. N. Tumanov, “Spectral Portraits in the Semi-Classical Approximation of the Sturm-Liouville Problem with a Complex Potential”, J. Phys.: Conf. Ser., 1141 (2018), 012155
S. A. Stepin, V. V. Fufaev, “The phase-integral method in a problem of singular perturbation theory”, Izv. Math., 81:2 (2017), 359–390
V. V. Fufaev, “Level lines of harmonic functions related to some Abelian integrals”, Moscow University Mathematics Bulletin, 72:1 (2017), 15–23
D. V. Nekhaev, A. I. Shafarevich, “A quasiclassical limit of the spectrum of a Schrödinger operator with complex periodic potential”, Sb. Math., 208:10 (2017), 1535–1556
A. Ifa, N. M'Hadbi, M. Rouleux, “On Generalized Bohr–Sommerfeld Quantization Rules for Operators with PT Symmetry”, Math. Notes, 99:5 (2016), 676–684
Tumanov S.N. Shkalikov A.A., “the Limit Spectral Graph in Semiclassical Approximation For the Sturm-Liouville Problem With Complex Polynomial Potential”, Dokl. Math., 92:3 (2015), 773–777
A. I. Esina, A. I. Shafarevich, “Asymptotics of the Spectrum and Eigenfunctions of the Magnetic Induction Operator on a Compact Two-Dimensional Surface of Revolution”, Math. Notes, 95:3 (2014), 374–387
Tobias Gulden, Michael Janas, Alex Kamenev, “Riemann surface dynamics of periodic non-Hermitian Hamiltonians”, J. Phys. A: Math. Theor., 47:8 (2014), 085001
V. P. Maslov, “Bose–Einstein-Type Distribution for Nonideal Gas. Two-Liquid Model of Supercritical States and Its Applications”, Math. Notes, 94:2 (2013), 231–237
Esina A.I., Shafarevich A.I., “Analogs of Bohr-Sommerfeld-Maslov Quantization Conditions on Riemann Surfaces and Spectral Series of Nonself-Adjoint Operators”, Russ. J. Math. Phys., 20:2 (2013), 172–181
Maslov V.P., Maslova T.V., “Parastatistics and Phase Transition From a Cluster as a Fluctuation to a Cluster as a Distinguishable Object”, Russ. J. Math. Phys., 20:4 (2013), 468–475