Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 88, Issue 2, Pages 229–248
DOI: https://doi.org/10.4213/mzm8803
(Mi mzm8803)
 

This article is cited in 16 scientific papers (total in 16 papers)

Quantization Conditions on Riemannian Surfaces and the Semiclassical Spectrum of the Schrödinger Operator with Complex Potential

A. I. Esinaa, A. I. Shafarevichbc

a Moscow Institute of Physics and Technology
b M. V. Lomonosov Moscow State University
c A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
References:
Abstract: We describe the asymptotics of the spectrum of the operator
$$ \widehat H\biggl(x,-\imath h\frac{\partial}{\partial x}\biggr)=-h^2\frac{\partial^2}{\partial x^2}+\imath(\cos x+\cos2x) $$
as $h\to0$ and show that the spectrum concentrates near some graph on the complex plane. We obtain equations for the eigenvalues, which are conditions on the periods of a holomorphic form on the corresponding Riemannian surface.
Keywords: Schrödinger operator, semiclassical spectrum of an operator, Riemannian surface, quantization condition, holomorphic form, Stokes line, monodromy matrix, turning point.
Received: 25.11.2009
English version:
Mathematical Notes, 2010, Volume 88, Issue 2, Pages 209–227
DOI: https://doi.org/10.1134/S0001434610070205
Bibliographic databases:
Document Type: Article
UDC: 517.984.55+514.84
Language: Russian
Citation: A. I. Esina, A. I. Shafarevich, “Quantization Conditions on Riemannian Surfaces and the Semiclassical Spectrum of the Schrödinger Operator with Complex Potential”, Mat. Zametki, 88:2 (2010), 229–248; Math. Notes, 88:2 (2010), 209–227
Citation in format AMSBIB
\Bibitem{EsiSha10}
\by A.~I.~Esina, A.~I.~Shafarevich
\paper Quantization Conditions on Riemannian Surfaces and the Semiclassical Spectrum of the Schr\"odinger Operator with Complex Potential
\jour Mat. Zametki
\yr 2010
\vol 88
\issue 2
\pages 229--248
\mathnet{http://mi.mathnet.ru/mzm8803}
\crossref{https://doi.org/10.4213/mzm8803}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2867051}
\elib{https://elibrary.ru/item.asp?id=15319841}
\transl
\jour Math. Notes
\yr 2010
\vol 88
\issue 2
\pages 209--227
\crossref{https://doi.org/10.1134/S0001434610070205}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000284088200020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956490304}
Linking options:
  • https://www.mathnet.ru/eng/mzm8803
  • https://doi.org/10.4213/mzm8803
  • https://www.mathnet.ru/eng/mzm/v88/i2/p229
  • This publication is cited in the following 16 articles:
    1. D.I. Borisov, D.M. Polyakov, “Uniform Spectral Asymptotics for a Schrödinger Operator on a Segment with Delta-Interaction”, Russ. J. Math. Phys., 31:2 (2024), 149  crossref
    2. A.A. Arzhanov, S.A. Stepin, V.A. Titov, V.V. Fufaev, “Stokes Phenomenon and Spectral Locus in a Problem of Singular Perturbation Theory”, Russ. J. Math. Phys., 31:3 (2024), 351  crossref
    3. Stepin S.A., Fufaev V.V., “Wkb Asymptotics and Spectral Deformation in Semi-Classical Limit”, J. Dyn. Control Syst., 26:1 (2020), 175–198  crossref  mathscinet  isi  scopus
    4. Stepin S.A., Fufaev V.V., “Spectral Deformation in a Problem of Singular Perturbation Theory”, Dokl. Math., 99:1 (2019), 60–63  crossref  mathscinet  isi  scopus
    5. Shafarevich A., “Quantization Conditions on Riemannian Surfaces and Spectral Series of Non-Selfadjoint Operators”, Formal and Analytic Solutions of Diff. Equations, Springer Proceedings in Mathematics & Statistics, 256, ed. Filipuk G. Lastra A. Michalik S., Springer, 2018, 177–187  crossref  mathscinet  isi  scopus
    6. A. A. Shkalikov, S. N. Tumanov, “Spectral Portraits in the Semi-Classical Approximation of the Sturm-Liouville Problem with a Complex Potential”, J. Phys.: Conf. Ser., 1141 (2018), 012155  crossref
    7. S. A. Stepin, V. V. Fufaev, “The phase-integral method in a problem of singular perturbation theory”, Izv. Math., 81:2 (2017), 359–390  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. V. V. Fufaev, “Level lines of harmonic functions related to some Abelian integrals”, Moscow University Mathematics Bulletin, 72:1 (2017), 15–23  mathnet  crossref  mathscinet  isi
    9. D. V. Nekhaev, A. I. Shafarevich, “A quasiclassical limit of the spectrum of a Schrödinger operator with complex periodic potential”, Sb. Math., 208:10 (2017), 1535–1556  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. A. Ifa, N. M'Hadbi, M. Rouleux, “On Generalized Bohr–Sommerfeld Quantization Rules for Operators with PT Symmetry”, Math. Notes, 99:5 (2016), 676–684  mathnet  crossref  crossref  mathscinet  isi  elib
    11. Tumanov S.N. Shkalikov A.A., “the Limit Spectral Graph in Semiclassical Approximation For the Sturm-Liouville Problem With Complex Polynomial Potential”, Dokl. Math., 92:3 (2015), 773–777  crossref  mathscinet  zmath  isi  scopus
    12. A. I. Esina, A. I. Shafarevich, “Asymptotics of the Spectrum and Eigenfunctions of the Magnetic Induction Operator on a Compact Two-Dimensional Surface of Revolution”, Math. Notes, 95:3 (2014), 374–387  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    13. Tobias Gulden, Michael Janas, Alex Kamenev, “Riemann surface dynamics of periodic non-Hermitian Hamiltonians”, J. Phys. A: Math. Theor., 47:8 (2014), 085001  crossref
    14. V. P. Maslov, “Bose–Einstein-Type Distribution for Nonideal Gas. Two-Liquid Model of Supercritical States and Its Applications”, Math. Notes, 94:2 (2013), 231–237  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    15. Esina A.I., Shafarevich A.I., “Analogs of Bohr-Sommerfeld-Maslov Quantization Conditions on Riemann Surfaces and Spectral Series of Nonself-Adjoint Operators”, Russ. J. Math. Phys., 20:2 (2013), 172–181  crossref  mathscinet  zmath  isi  elib  scopus
    16. Maslov V.P., Maslova T.V., “Parastatistics and Phase Transition From a Cluster as a Fluctuation to a Cluster as a Distinguishable Object”, Russ. J. Math. Phys., 20:4 (2013), 468–475  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:1032
    Full-text PDF :369
    References:91
    First page:26
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025