Abstract:
In the present paper, the spinodal is constructed by using the values of the isotherm of a new ideal gas at the point μ=0 and as μ=−∞ on the (Z, P)-diagram. For a nonideal gas, a generalization of the type of Bogoliubov–Vlasov self-consistent field is given if the potential of pairwise interaction is known. A “two-liquid” model of the supercritical region, i.e., a superfluid “liquid” (molecules–monomers) and a normal “liquid” (clusters), is constructed. An application to the transport problems is given.
Citation:
V. P. Maslov, “Bose–Einstein-Type Distribution for Nonideal Gas. Two-Liquid Model of Supercritical States and Its Applications”, Mat. Zametki, 94:2 (2013), 237–245; Math. Notes, 94:2 (2013), 231–237
\Bibitem{Mas13}
\by V.~P.~Maslov
\paper Bose--Einstein-Type Distribution for Nonideal Gas. Two-Liquid Model of Supercritical States and Its Applications
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 2
\pages 237--245
\mathnet{http://mi.mathnet.ru/mzm10316}
\crossref{https://doi.org/10.4213/mzm10316}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206085}
\zmath{https://zbmath.org/?q=an:06228546}
\elib{https://elibrary.ru/item.asp?id=20731773}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 2
\pages 231--237
\crossref{https://doi.org/10.1134/S0001434613070237}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000323665000023}
\elib{https://elibrary.ru/item.asp?id=20455971}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84883379607}
Linking options:
https://www.mathnet.ru/eng/mzm10316
https://doi.org/10.4213/mzm10316
https://www.mathnet.ru/eng/mzm/v94/i2/p237
This publication is cited in the following 4 articles:
V. P. Maslov, “New construction of classical thermodynamics and UD-statistics”, Russ. J. Math. Phys., 21:2 (2014), 256–284
V. P. Maslov, T. V. Maslova, “Parastatistics and phase transition from a cluster as a fluctuation to a cluster as a distinguishable object”, Russ. J. Math. Phys., 20:4 (2013), 468–475
V. P. Maslov, T. V. Maslova, “A new approach to mathematical statistics involving the number of degrees of freedom, temperature, and symplectically conjugate quantities”, Russ. J. Math. Phys., 20:3 (2013), 315–325
V. P. Maslov, T. V. Maslova, “Unbounded probability theory and its applications”, Theory Probab. Appl., 57:3 (2013), 444–467