Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 94, Issue 2, Pages 237–245
DOI: https://doi.org/10.4213/mzm10316
(Mi mzm10316)
 

This article is cited in 4 scientific papers (total in 4 papers)

Bose–Einstein-Type Distribution for Nonideal Gas. Two-Liquid Model of Supercritical States and Its Applications

V. P. Maslov

Moscow State Institute of Electronics and Mathematics — Higher School of Economics
Full-text PDF (480 kB) Citations (4)
References:
Abstract: In the present paper, the spinodal is constructed by using the values of the isotherm of a new ideal gas at the point μ=0 and as μ= on the (ZP)-diagram. For a nonideal gas, a generalization of the type of Bogoliubov–Vlasov self-consistent field is given if the potential of pairwise interaction is known. A “two-liquid” model of the supercritical region, i.e., a superfluid “liquid” (molecules–monomers) and a normal “liquid” (clusters), is constructed. An application to the transport problems is given.
Keywords: two-liquid model, supercritical state, nonideal gas, Bose-gas, clusters, monomers.
Received: 19.04.2013
English version:
Mathematical Notes, 2013, Volume 94, Issue 2, Pages 231–237
DOI: https://doi.org/10.1134/S0001434613070237
Bibliographic databases:
Document Type: Article
UDC: 517+536
Language: Russian
Citation: V. P. Maslov, “Bose–Einstein-Type Distribution for Nonideal Gas. Two-Liquid Model of Supercritical States and Its Applications”, Mat. Zametki, 94:2 (2013), 237–245; Math. Notes, 94:2 (2013), 231–237
Citation in format AMSBIB
\Bibitem{Mas13}
\by V.~P.~Maslov
\paper Bose--Einstein-Type Distribution for Nonideal Gas. Two-Liquid Model of Supercritical States and Its Applications
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 2
\pages 237--245
\mathnet{http://mi.mathnet.ru/mzm10316}
\crossref{https://doi.org/10.4213/mzm10316}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206085}
\zmath{https://zbmath.org/?q=an:06228546}
\elib{https://elibrary.ru/item.asp?id=20731773}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 2
\pages 231--237
\crossref{https://doi.org/10.1134/S0001434613070237}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000323665000023}
\elib{https://elibrary.ru/item.asp?id=20455971}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84883379607}
Linking options:
  • https://www.mathnet.ru/eng/mzm10316
  • https://doi.org/10.4213/mzm10316
  • https://www.mathnet.ru/eng/mzm/v94/i2/p237
  • This publication is cited in the following 4 articles:
    1. V. P. Maslov, “New construction of classical thermodynamics and UD-statistics”, Russ. J. Math. Phys., 21:2 (2014), 256–284  crossref  mathscinet  zmath  isi  scopus
    2. V. P. Maslov, T. V. Maslova, “Parastatistics and phase transition from a cluster as a fluctuation to a cluster as a distinguishable object”, Russ. J. Math. Phys., 20:4 (2013), 468–475  crossref  mathscinet  zmath  isi  scopus
    3. V. P. Maslov, T. V. Maslova, “A new approach to mathematical statistics involving the number of degrees of freedom, temperature, and symplectically conjugate quantities”, Russ. J. Math. Phys., 20:3 (2013), 315–325  crossref  mathscinet  zmath  isi  elib  scopus
    4. V. P. Maslov, T. V. Maslova, “Unbounded probability theory and its applications”, Theory Probab. Appl., 57:3 (2013), 444–467  mathnet  mathnet  crossref  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:666
    Full-text PDF :239
    References:100
    First page:77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025