Abstract:
A direct theorem of the Jackson type and several converse theorems are established for the approximation of periodic functions of period 2π by trigonometrical polynomials in the metric of Lp, 0<p<1.
Citation:
V. I. Ivanov, “Direct and converse theorems of the theory of approximation in the metric of Lp for 0<p<1”, Mat. Zametki, 18:5 (1975), 641–658; Math. Notes, 18:5 (1975), 972–982
\Bibitem{Iva75}
\by V.~I.~Ivanov
\paper Direct and converse theorems of the theory of approximation in the metric of $L_p$ for $0<p<1$
\jour Mat. Zametki
\yr 1975
\vol 18
\issue 5
\pages 641--658
\mathnet{http://mi.mathnet.ru/mzm7677}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=412710}
\zmath{https://zbmath.org/?q=an:0337.42001}
\transl
\jour Math. Notes
\yr 1975
\vol 18
\issue 5
\pages 972--982
\crossref{https://doi.org/10.1007/BF01153563}
Linking options:
https://www.mathnet.ru/eng/mzm7677
https://www.mathnet.ru/eng/mzm/v18/i5/p641
This publication is cited in the following 17 articles:
S. Artamonov, K. Runovski, H.-J. Schmeisser, “Methods of trigonometric approximation and generalized smoothness. II”, Eurasian Math. J., 13:4 (2022), 18–43
M. Sh. Shabozov, E. U. Kadamshoev, “Sharp Inequalities between the Best Root-Mean-Square Approximations of Analytic Functions in the Disk and Some Smoothness Characteristics in the Bergman Space”, Math. Notes, 110:2 (2021), 248–260
K. V. Runovskii, “Generalized Smoothness and Approximation of Periodic Functions in the Spaces Lp, 1<p<+∞”, Math. Notes, 106:3 (2019), 412–422
Yurii Kolomoitsev, Tetiana Lomako, Applied and Numerical Harmonic Analysis, Topics in Classical and Modern Analysis, 2019, 183
Yurii Kolomoitsev, “Best approximations and moduli of smoothness of functions and their derivatives in Lp, 0<p<1”, Journal of Approximation Theory, 232 (2018), 12
Yurii Kolomoitsev, “On moduli of smoothness and averaged differences of fractional order”, FCAA, 20:4 (2017), 988
Yurii Kolomoitsev, Jürgen Prestin, “Sharp estimates of approximation of periodic functions in Hölder spaces”, Journal of Approximation Theory, 200 (2015), 68
Yu. S. Kolomoitsev, “Approximation properties of generalized Bochner-Riesz means in the Hardy spaces Hp, 0<p⩽1”, Sb. Math., 203:8 (2012), 1151–1168
I. N. Katkovskaya, “Riesz' Compactness Criterion for the Space of Measurable Functions”, Math. Notes, 89:1 (2011), 145–149
K. Runovski, H.-J. Schmeisser, “Methods of trigonometric approximation and generalized smoothness. I”, Eurasian Math. J., 2:3 (2011), 98–124
V. I. Ivanov, “Direct and inverse theorems in approximation theory for periodic functions in S. B. Stechkins papers and the development of these theorems”, Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S1–S13
Yu. S. Kolomoitsev, “On approximation of functions by trigonometric polynomials with incomplete spectrum in Lp, 0<p<1”, J. Math. Sci. (N. Y.), 165:4 (2010), 463–472
È. A. Storozhenko, “Nikol'skii-Stechkin inequality for trigonometric polynomials in L0”, Math. Notes, 80:3 (2006), 403–409
K. V. Runovskii, “Generalization of a theorem of Marcinkiewicz–Zygmund”, Math. Notes, 57:2 (1995), 180–183
V. G. Krotov, “On differentiability of functions in Lp, 0<p<1”, Math. USSR-Sb., 45:1 (1983), 101–119
È. A. Storozhenko, “Theorems of Jackson type in Hp, 0<p<1”, Math. USSR-Izv., 17:1 (1981), 203–218
È. A. Storozhenko, “Approximation of functions of class Hp, 0<p⩽1”, Math. USSR-Sb., 34:4 (1978), 527–545