This article is cited in 7 scientific papers (total in 7 papers)
Sharp Inequalities between the Best Root-Mean-Square Approximations of Analytic Functions in the Disk and Some Smoothness Characteristics in the Bergman Space
Abstract:
In Jackson–Stechkin type inequalities for the smoothness characteristic $\Lambda_m(f)$, $m\in\mathbb N$, we find exact constants determined by averaging the norms of finite differences of $m$th order of a function $f\in B_2$. We solve the problem of best joint approximation for a certain class of functions from $B_2^{(r)}$, $r\in\mathbb Z_+$ whose smoothness characteristic $\Lambda_m(f)$ averaged with a given weight is bounded above by the majorant $\Phi$. The exact values of $n$-widths of some classes of functions are also calculated.
Citation:
M. Sh. Shabozov, E. U. Kadamshoev, “Sharp Inequalities between the Best Root-Mean-Square Approximations of Analytic Functions in the Disk and Some Smoothness Characteristics in the Bergman Space”, Mat. Zametki, 110:2 (2021), 266–281; Math. Notes, 110:2 (2021), 248–260
\Bibitem{ShaKad21}
\by M.~Sh.~Shabozov, E.~U.~Kadamshoev
\paper Sharp Inequalities between the Best Root-Mean-Square Approximations of Analytic Functions in the Disk and Some Smoothness Characteristics in the Bergman Space
\jour Mat. Zametki
\yr 2021
\vol 110
\issue 2
\pages 266--281
\mathnet{http://mi.mathnet.ru/mzm13054}
\crossref{https://doi.org/10.4213/mzm13054}
\elib{https://elibrary.ru/item.asp?id=47001498}
\transl
\jour Math. Notes
\yr 2021
\vol 110
\issue 2
\pages 248--260
\crossref{https://doi.org/10.1134/S0001434621070269}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000687705200026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85113815708}
Linking options:
https://www.mathnet.ru/eng/mzm13054
https://doi.org/10.4213/mzm13054
https://www.mathnet.ru/eng/mzm/v110/i2/p266
This publication is cited in the following 7 articles:
M. R. Langarshoev, A. G. Aidarmamadov, “Nailuchshee priblizhenie analiticheskikh v edinichnom kruge funktsii v vesovom prostranstve Bergmana”, Dalnevost. matem. zhurn., 24:1 (2024), 55–66
M. R. Langarshoev, “O nailuchshem priblizhenii analiticheskikh v kruge funktsii v vesovom prostranstve Bergmana $\mathscr{B}_{2,\mu}$”, Izv. vuzov. Matem., 2024, no. 6, 27–36
M. Sh. Shabozov, A. A. Shabozova, “O sovmestnom priblizhenii nekotorykh klassov funktsii v prostranstve Bergmana $B_2$”, Izv. vuzov. Matem., 2024, no. 6, 80–88
M. Sh. Shabozov, A. A. Shabozova, E. U. Kadamshoev, “Value of $n$-width of some classes of analytic functions in the Bergman space $B_{2}$”, Moscow University Mathematics Bulletin, 79:3 (2024), 112–121
M. Sh. Shabozov, A. A. Shabozova, “On Simultaneous Approximation of Certain Classes of Functions in the Bergman Space B2”, Russ Math., 68:6 (2024), 68
M. R. Langarshoev, “On the Best Approximation of Functions Analytic in the Disk in the Weighted Bergman Space ${{\mathcal{B}}_{{2,\mu }}}$”, Russ Math., 68:6 (2024), 21
M. Sh. Shabozov, D. K. Tukhliev, “On mean–square approximation of functions in Bergman space $B_2$ and value of widths of some classes of functions”, Ufa Math. J., 16:2 (2024), 66–75