Citation:
A. A. Bolibrukh, “On sufficient conditions for the positive solvability of the Riemann–Hilbert problem”, Mat. Zametki, 51:2 (1992), 9–19; Math. Notes, 51:2 (1992), 110–117
\Bibitem{Bol92}
\by A.~A.~Bolibrukh
\paper On sufficient conditions for the positive solvability of the Riemann--Hilbert problem
\jour Mat. Zametki
\yr 1992
\vol 51
\issue 2
\pages 9--19
\mathnet{http://mi.mathnet.ru/mzm4466}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1165460}
\zmath{https://zbmath.org/?q=an:0790.34001}
\transl
\jour Math. Notes
\yr 1992
\vol 51
\issue 2
\pages 110--117
\crossref{https://doi.org/10.1007/BF02102113}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992JW31000021}
Linking options:
https://www.mathnet.ru/eng/mzm4466
https://www.mathnet.ru/eng/mzm/v51/i2/p9
This publication is cited in the following 20 articles:
Thomas Bothner, “On the origins of Riemann–Hilbert problems in mathematics*”, Nonlinearity, 34:4 (2021), R1
Raphaël C. Assier, Andrey V. Shanin, “Analytical continuation of two-dimensional wave fields”, Proc. R. Soc. A., 477:2245 (2021)
Martin Klimeš, “Analytic Classification of Families of Linear Differential Systems Unfolding a Resonant Irregular Singularity”, SIGMA, 16 (2020), 006, 46 pp.
Kazuki Hiroe, Algorithms and Computation in Mathematics, 28, Two Algebraic Byways from Differential Equations: Gröbner Bases and Quivers, 2020, 271
C. Mitschi, “Some applications of parameterized Picard–Vessiot theory”, Izv. Math., 80:1 (2016), 167–188
Cameron Franc, Geoffrey Mason, “Hypergeometric series, modular linear differential equations and vector-valued modular forms”, Ramanujan J, 41:1-3 (2016), 233
Antonio Alarcón, Franc Forstnerič, Abel Symposia, 10, Complex Geometry and Dynamics, 2015, 101
D. V. Anosov, V. P. Leksin, “Andrei Andreevich Bolibrukh's works on the analytic theory of differential equations”, Russian Math. Surveys, 66:1 (2011), 1–33
R. R. Gontsov, V. A. Poberezhnyi, “Various versions of the Riemann–Hilbert problem for linear differential equations”, Russian Math. Surveys, 63:4 (2008), 603–639
A.A. Bolibruch, S. Malek, C. Mitschi, “On the generalized Riemann–Hilbert problem with irregular singularities”, Expositiones Mathematicae, 24:3 (2006), 235
A. A. Bolibruch, Mathematical Events of the Twentieth Century, 2006, 49
V.P. Kostov, Encyclopedia of Mathematical Physics, 2006, 436
V. A. Poberezhnyi, “Special Monodromy Groups and the Riemann–Hilbert Problem for the Riemann Equation”, Math. Notes, 77:5 (2005), 695–707
D. V. Anosov, V. P. Leksin, “Andrei Andreevich Bolibrukh in life and science (30 January 1950 – 11 November 2003)”, Russian Math. Surveys, 59:6 (2004), 1009–1028
Yu. S. Ilyashenko, “Three gems in the theory of linear differential equations (in the work of A. A. Bolibrukh)”, Russian Math. Surveys, 59:6 (2004), 1079–1091
C. Sabbah, “Fourier–Laplace transform of irreducible regular differential systems on the Riemann sphere”, Russian Math. Surveys, 59:6 (2004), 1165–1180
A. A. Bolibrukh, “Differential Equations with Meromorphic Coefficients”, Proc. Steklov Inst. Math., 272, suppl. 2 (2011), S13–S43
HÉLÈNE ESNAULT, CLAUS HERTLING, “SEMISTABLE BUNDLES ON CURVES AND REDUCIBLE REPRESENTATIONS OF THE FUNDAMENTAL GROUP”, Int. J. Math., 12:07 (2001), 847
A. A. Bolibrukh, “On Fuchsian Systems with Given Asymptotics and Monodromy”, Proc. Steklov Inst. Math., 224 (1999), 98–106
A. Bolibrukh, “Holomorphic vector bundles on the Riemann sphere and the 21 st Hilbert problem”, J Math Sci, 82:6 (1996), 3759