Abstract:
Three classical results of A. A. Bolibrukh in the theory of linear systems with complex time are presented: the negative solution of the 21st Hilbert problem, sufficient conditions for this problem to have a positive solution, and sufficient conditions for the reducibility of a system with an irregular singular point to Birkhoff standard form.
Citation:
Yu. S. Ilyashenko, “Three gems in the theory of linear differential equations (in the work of A. A. Bolibrukh)”, Russian Math. Surveys, 59:6 (2004), 1079–1091
\Bibitem{Ily04}
\by Yu.~S.~Ilyashenko
\paper Three gems in the theory of linear differential equations (in the work of A.\,A.~Bolibrukh)
\jour Russian Math. Surveys
\yr 2004
\vol 59
\issue 6
\pages 1079--1091
\mathnet{http://mi.mathnet.ru/eng/rm796}
\crossref{https://doi.org/10.1070/RM2004v059n06ABEH000796}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2138468}
\zmath{https://zbmath.org/?q=an:1077.34006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004RuMaS..59.1079I}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000228734800005}
\elib{https://elibrary.ru/item.asp?id=13445997}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-17744380628}
Linking options:
https://www.mathnet.ru/eng/rm796
https://doi.org/10.1070/RM2004v059n06ABEH000796
https://www.mathnet.ru/eng/rm/v59/i6/p73
This publication is cited in the following 1 articles:
D. V. Anosov, V. P. Leksin, “Andrei Andreevich Bolibrukh's works on the analytic theory of differential equations”, Russian Math. Surveys, 66:1 (2011), 1–33