Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 115, Issue 4, Pages 521–532
DOI: https://doi.org/10.4213/mzm14142
(Mi mzm14142)
 

On the Convergence Rate in a Local Renewal Theorem for a Random Markov Walk

G. A. Bakaia

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: Suppose that a sequence {Xn}n0 of random variables is a homogeneous indecomposable Markov chain with finite set of states. Let ξn, nN, be random variables defined on the chain transitions.
The reconstruction function
uk:=+n=0P(Sn=k),kN,
where S0:=0 and Sn:=ξ1++ξn, nN, is introduced. It is shown that this function converges to its limit with exponential rate, and an explicit description of the exponent is given.
Keywords: local reconstruction theorem, Markov chain.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-265
This work was performed at Steklov Mathematical Institute of Russian Academy of Sciences and financially supported by the Ministry of Education and Science of the Russian Federation (contract no. 075-15-2022-265).
Received: 18.04.2023
Revised: 29.09.2023
English version:
Mathematical Notes, 2024, Volume 115, Issue 4, Pages 479–488
DOI: https://doi.org/10.1134/S0001434624030209
Bibliographic databases:
Document Type: Article
UDC: 519.217.2
Language: Russian
Citation: G. A. Bakai, “On the Convergence Rate in a Local Renewal Theorem for a Random Markov Walk”, Mat. Zametki, 115:4 (2024), 521–532; Math. Notes, 115:4 (2024), 479–488
Citation in format AMSBIB
\Bibitem{Bak24}
\by G.~A.~Bakai
\paper On the Convergence Rate in a Local Renewal Theorem for a Random Markov Walk
\jour Mat. Zametki
\yr 2024
\vol 115
\issue 4
\pages 521--532
\mathnet{http://mi.mathnet.ru/mzm14142}
\crossref{https://doi.org/10.4213/mzm14142}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4767921}
\transl
\jour Math. Notes
\yr 2024
\vol 115
\issue 4
\pages 479--488
\crossref{https://doi.org/10.1134/S0001434624030209}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001266109900026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85197517580}
Linking options:
  • https://www.mathnet.ru/eng/mzm14142
  • https://doi.org/10.4213/mzm14142
  • https://www.mathnet.ru/eng/mzm/v115/i4/p521
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:147
    Full-text PDF :5
    Russian version HTML:10
    References:32
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025