Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 115, Issue 4, Pages 502–520
DOI: https://doi.org/10.4213/mzm14033
(Mi mzm14033)
 

Limit theorem for the Moment at Which a Random Walk Attains Its Maximum at a Fixed Level in the Region of Tempered Deviations

M. A. Anokhina

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: We consider a random walk with zero mean and finite variance whose steps are arithmetic. The limit arcsine law for the time at which a walk attains its maximum is well known. In this paper, we consider the distribution of the moment of attaining the maximum under the assumption that the maximum value itself is fixed. We show that, in the case of a tempered deviation of the maximum, the distribution of the moment of the maximum with appropriate normalization converges to the chi-square distribution with one degree of freedom. Similar results were obtained in the nonlattice case.
Keywords: random walks, local limit theorems, integro-local limit theorems.
Funding agency Grant number
Russian Science Foundation 19-11-00111
This work was financially supported by the Russian Science Foundation, project 19-11-00111, https://rscf.ru/en/project/19-11-00111/.
Received: 17.05.2023
Revised: 25.10.2023
English version:
Mathematical Notes, 2024, Volume 115, Issue 4, Pages 463–478
DOI: https://doi.org/10.1134/S0001434624030192
Bibliographic databases:
Document Type: Article
UDC: 519.214.4
MSC: 60G50
Language: Russian
Citation: M. A. Anokhina, “Limit theorem for the Moment at Which a Random Walk Attains Its Maximum at a Fixed Level in the Region of Tempered Deviations”, Mat. Zametki, 115:4 (2024), 502–520; Math. Notes, 115:4 (2024), 463–478
Citation in format AMSBIB
\Bibitem{Ano24}
\by M.~A.~Anokhina
\paper Limit theorem for the Moment at Which a Random Walk Attains Its Maximum at a Fixed Level in the Region of Tempered Deviations
\jour Mat. Zametki
\yr 2024
\vol 115
\issue 4
\pages 502--520
\mathnet{http://mi.mathnet.ru/mzm14033}
\crossref{https://doi.org/10.4213/mzm14033}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4767920}
\transl
\jour Math. Notes
\yr 2024
\vol 115
\issue 4
\pages 463--478
\crossref{https://doi.org/10.1134/S0001434624030192}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001266109900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85197482368}
Linking options:
  • https://www.mathnet.ru/eng/mzm14033
  • https://doi.org/10.4213/mzm14033
  • https://www.mathnet.ru/eng/mzm/v115/i4/p502
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:147
    Full-text PDF :5
    Russian version HTML:6
    References:31
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025