Abstract:
This paper deals with list colorings of uniform hypergraphs. Let H(m,r,k) be the complete r-partite k-uniform hypergraph with parts of equal size m in which each edge contains exactly one vertex from some k⩽r parts. Using results on multiple covers by independent sets, we establish that, for fixed k and r, the list-chromatic number of H(m,r,k) is (1+o(1))logr/(r−k+1)(m) as m→∞.
Keywords:
hypergraphs, independent sets, list colorings, multiple covers.
Citation:
D. A. Shabanov, T. M. Shaikheeva, “The List-Chromatic Number of Complete Multipartite Hypergraphs and Multiple Covers by Independent Sets”, Mat. Zametki, 107:3 (2020), 454–465; Math. Notes, 107:3 (2020), 499–508
\Bibitem{ShaSha20}
\by D.~A.~Shabanov, T.~M.~Shaikheeva
\paper The List-Chromatic Number of Complete Multipartite Hypergraphs and Multiple Covers by Independent Sets
\jour Mat. Zametki
\yr 2020
\vol 107
\issue 3
\pages 454--465
\mathnet{http://mi.mathnet.ru/mzm12379}
\crossref{https://doi.org/10.4213/mzm12379}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070865}
\elib{https://elibrary.ru/item.asp?id=43286398}
\transl
\jour Math. Notes
\yr 2020
\vol 107
\issue 3
\pages 499--508
\crossref{https://doi.org/10.1134/S000143462003013X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000528213700013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083862949}
Linking options:
https://www.mathnet.ru/eng/mzm12379
https://doi.org/10.4213/mzm12379
https://www.mathnet.ru/eng/mzm/v107/i3/p454
This publication is cited in the following 2 articles:
Ph. A. Pushnyakov, A. M. Raigorodskii, “Estimate of the number of edges in subgraphs of a Johnson graph”, Dokl. Math., 104:1 (2021), 193–195
V. S. Karas, P. A. Ogarok, A. M. Raigorodskii, “Asymptotics of the independence number of a random subgraph of the graph G(n,r,<s)”, Dokl. Math., 104:1 (2021), 173–174