Abstract:
We consider a strongly resonant homogeneous Dirichlet problem
for elliptic-type equations
with
discontinuous nonlinearity in the phase variable.
Using the variational method,
we prove an existence theorem
for at least three nontrivial solutions
of the problem under consideration;
at least two of these are semiregular.
The resulting theorem
is applied
to the eigenvalue problem
for elliptic-type equations
with discontinuous nonlinearity
with positive spectral parameter.
An example of a discontinuous nonlinearity
satisfying all the assumptions
of the theorem is given.
Citation:
V. N. Pavlenko, D. K. Potapov, “Existence of Three Nontrivial Solutions of an Elliptic Boundary-Value Problem with Discontinuous Nonlinearity in the Case of Strong Resonance”, Mat. Zametki, 101:2 (2017), 247–261; Math. Notes, 101:2 (2017), 284–296
\Bibitem{PavPot17}
\by V.~N.~Pavlenko, D.~K.~Potapov
\paper Existence of Three Nontrivial Solutions of an Elliptic Boundary-Value Problem with Discontinuous Nonlinearity in the Case of Strong Resonance
\jour Mat. Zametki
\yr 2017
\vol 101
\issue 2
\pages 247--261
\mathnet{http://mi.mathnet.ru/mzm10743}
\crossref{https://doi.org/10.4213/mzm10743}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3608023}
\elib{https://elibrary.ru/item.asp?id=28172146}
\transl
\jour Math. Notes
\yr 2017
\vol 101
\issue 2
\pages 284--296
\crossref{https://doi.org/10.1134/S0001434617010333}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000396392700033}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015671405}
Linking options:
https://www.mathnet.ru/eng/mzm10743
https://doi.org/10.4213/mzm10743
https://www.mathnet.ru/eng/mzm/v101/i2/p247
This publication is cited in the following 8 articles:
V. N. Pavlenko, D. K. Potapov, “Semiregular solutions of elliptic boundary-value problems with discontinuous nonlinearities of exponential growth”, Sb. Math., 213:7 (2022), 1004–1019
V. N. Pavlenko, D. K. Potapov, “One class of quasilinear elliptic type equations with discontinuous nonlinearities”, Izv. Math., 86:6 (2022), 1162–1178
V. N. Pavlenko, D. K. Potapov, “Positive solutions of superlinear elliptic problems with discontinuous non-linearities”, Izv. Math., 85:2 (2021), 262–278
V. N. Pavlenko, D. K. Potapov, “On a class of elliptic boundary-value problems with parameter and discontinuous non-linearity”, Izv. Math., 84:3 (2020), 592–607
V. N. Pavlenko, D. K. Potapov, “On the existence of three nontrivial solutions of a resonance elliptic boundary value problem with a discontinuous nonlinearity”, Differ. Equ., 56:7 (2020), 831–841
V. N. Pavlenko, D. K. Potapov, “Properties of the spectrum of an elliptic boundary value problem with a parameter and a discontinuous nonlinearity”, Sb. Math., 210:7 (2019), 1043–1066
A. V. Arutyunov, S. E. Zhukovskii, “Variational Principles in Nonlinear Analysis and Their Generalization”, Math. Notes, 103:6 (2018), 1014–1019
S. M. Voronin, S. F. Dolbeeva, O. N. Dementev, A. A. Ershov, M. G. Lepchinskii, S. V. Matveev, N. B. Medvedeva, D. K. Potapov, E. A. Rozhdestvenskaya, E. A. Sbrodova, I. M. Sokolinskaya, A. A. Solovev, V. I. Ukhobotov, V. E. Fedorov, “K 70-letiyu professora Vyacheslava Nikolaevicha Pavlenko”, Chelyab. fiz.-matem. zhurn., 2:4 (2017), 383–387