Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 97, Issue 1, Pages 85–102
DOI: https://doi.org/10.4213/mzm10603
(Mi mzm10603)
 

This article is cited in 6 scientific papers (total in 6 papers)

On New Ideal (Noninteracting) Gases in Supercritical Thermodynamics

V. P. Maslovabc

a M. V. Lomonosov Moscow State University
b A. Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow
c Moscow State Institute of Electronics and Mathematics — Higher School of Economics
Full-text PDF (676 kB) Citations (6)
References:
Abstract: Isotherms obtained on the basis of a new distribution are compared with isotherms of the famous van der Waals model, using a language easily understood by engineers and undergraduates (without proofs or theorems, which can be found in the given references, but with elementary examples and simple associations). We propose a new interpretation of the van der Waals model. On the Hougen–Watson diagram, the domain where the mixing of gases occurs with maximum rate is indicated. A new distribution is presented, the notion of new ideal gas is introduced, and the invariants of the isotherms introduced by the author are explained.
Keywords: isotherm, isochore, number of collective degrees of freedom, admissible cluster size, Boltzmann–Maxwell ideal gas, Lagrangian manifold, tunnel classical operator, focal point, jamming effect, critical point, opalescence.
Received: 24.10.2014
English version:
Mathematical Notes, 2015, Volume 97, Issue 1, Pages 85–99
DOI: https://doi.org/10.1134/S0001434615010113
Bibliographic databases:
Document Type: Article
UDC: 517+536
Language: Russian
Citation: V. P. Maslov, “On New Ideal (Noninteracting) Gases in Supercritical Thermodynamics”, Mat. Zametki, 97:1 (2015), 85–102; Math. Notes, 97:1 (2015), 85–99
Citation in format AMSBIB
\Bibitem{Mas15}
\by V.~P.~Maslov
\paper On New Ideal (Noninteracting) Gases in Supercritical Thermodynamics
\jour Mat. Zametki
\yr 2015
\vol 97
\issue 1
\pages 85--102
\mathnet{http://mi.mathnet.ru/mzm10603}
\crossref{https://doi.org/10.4213/mzm10603}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3370497}
\zmath{https://zbmath.org/?q=an:06459057}
\elib{https://elibrary.ru/item.asp?id=23421498}
\transl
\jour Math. Notes
\yr 2015
\vol 97
\issue 1
\pages 85--99
\crossref{https://doi.org/10.1134/S0001434615010113}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350557000011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924373070}
Linking options:
  • https://www.mathnet.ru/eng/mzm10603
  • https://doi.org/10.4213/mzm10603
  • https://www.mathnet.ru/eng/mzm/v97/i1/p85
  • This publication is cited in the following 6 articles:
    1. Maslov V.P., “Statistics Corresponding To Classical Thermodynamics. Construction of Isotherms”, Russ. J. Math. Phys., 22:1 (2015), 53–67  crossref  mathscinet  zmath  isi  scopus
    2. Maslov V.P., “Locally Ideal Liquid”, Russ. J. Math. Phys., 22:3 (2015), 361–373  crossref  mathscinet  zmath  isi  elib  scopus
    3. Maslov V.P., “a New Distribution Corresponding To Thermodynamics in Supercritical and Subcritical Regions and in the Region of Negative Pressure”, Dokl. Math., 91:3 (2015), 379–383  crossref  mathscinet  zmath  isi  elib  scopus
    4. Maslov V.P., “Distribution Corresponding To Classical Thermodynamics”, Phys. Wave Phenom., 23:2 (2015), 81–95  crossref  isi  elib  scopus
    5. V. P. Maslov, “Jump in the Number of Collective Degrees of Freedom as a Phase Transition of the First Kind”, Math. Notes, 97:2 (2015), 230–242  mathnet  mathnet  crossref  isi  scopus
    6. V. P. Maslov, “Probability Distribution for a Hard Liquid”, Math. Notes, 97:6 (2015), 909–918  mathnet  mathnet  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:602
    Full-text PDF :221
    References:99
    First page:65
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025