Abstract:
Asymptotic representations of power bounded operators and bounded semigroups of linear operators acting in Banach spaces are obtained under the assumptions that the spectrum of bounded operators on the unit circle and the spectrum of the semigroup generator on the imaginary axis are countable. The methods of abstract harmonic analysis and the spectral theory of operators were used.
This work was supported by the Russian Foundation for Basic Research (grant no. 13-01-00378) by the Russian Science Foundation (grant no. 14-21-00066 at Voronezh State University).
Citation:
A. G. Baskakov, “Harmonic and Spectral Analysis of Power Bounded Operators and Bounded Semigroups of Operators on Banach Spaces”, Mat. Zametki, 97:2 (2015), 174–190; Math. Notes, 97:2 (2015), 164–178
\Bibitem{Bas15}
\by A.~G.~Baskakov
\paper Harmonic and Spectral Analysis of Power Bounded Operators and Bounded Semigroups of Operators on Banach Spaces
\jour Mat. Zametki
\yr 2015
\vol 97
\issue 2
\pages 174--190
\mathnet{http://mi.mathnet.ru/mzm10285}
\crossref{https://doi.org/10.4213/mzm10285}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3370505}
\zmath{https://zbmath.org/?q=an:06459065}
\elib{https://elibrary.ru/item.asp?id=23421506}
\transl
\jour Math. Notes
\yr 2015
\vol 97
\issue 2
\pages 164--178
\crossref{https://doi.org/10.1134/S0001434615010198}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350557000019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84941621581}
Linking options:
https://www.mathnet.ru/eng/mzm10285
https://doi.org/10.4213/mzm10285
https://www.mathnet.ru/eng/mzm/v97/i2/p174
This publication is cited in the following 32 articles:
Vu Trong Luong, Nguyen Huy, Nguyen Minh, Nguyen Vien, “On asymptotic periodic solutions of fractional differential equations and applications”, Proc. Amer. Math. Soc., 2023
V. E. Strukov, “On Distributions That Are Almost Periodic at Infinity”, J Math Sci, 263:4 (2022), 511
I. I. Strukova, “On Some Properties of Functions Almost Periodic at Infinity from Homogeneous Spaces”, J Math Sci, 263:5 (2022), 643
Nguyen Van Minh, Hideaki Matsunaga, Nguyen Duc Huy, Vu Trong Luong, “A Spectral Theory of Polynomially Bounded Sequences and Applications to the Asymptotic Behavior of Discrete Systems”, FE, 65:3 (2022), 261
I. A. Vysotskaya, I. I. Strukova, “Issledovanie nekotorykh klassov pochti periodicheskikh na beskonechnosti funktsii”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 21:1 (2021), 4–14
Vu Trong Luong, Nguyen Van Minh, “A Simple Spectral Theory of Polynomially Bounded Solutions and Applications to Differential Equations”, Semigr. Forum, 102:2 (2021), 456–476
M. S. Bichegkuev, “Almost periodic at infinity solutions to integro-differential equations with non-invertible operator at derivative”, Ufa Math. J., 12:1 (2020), 3–12
A. G. Baskakov, V. E. Strukov, I. I. Strukova, “Almost periodic at infinity functions from homogeneous spaces as solutions to differential equations with unbounded operator coefficients”, Eurasian Math. J., 11:4 (2020), 8–24
A. G. Baskakov, E. E. Dikarev, “Spectral theory of functions in studying partial differential operators”, Ufa Math. J., 11:1 (2019), 3–18
V. E. Strukov, I. I. Strukova, “Garmonicheskii analiz medlenno menyayuschikhsya na beskonechnosti polugrupp operatorov”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 19:2 (2019), 152–163
I. A. Krishtal, N. B. Uskova, “Spektralnye svoistva differentsialnykh operatorov pervogo poryadka s involyutsiei i gruppy operatorov”, Sib. elektron. matem. izv., 16 (2019), 1091–1132
A. G. Baskakov, V. E. Strukov, I. I. Strukova, “Harmonic analysis of functions in homogeneous spaces and harmonic distributions that are periodic or almost periodic at infinity”, Sb. Math., 210:10 (2019), 1380–1427
V. E. Strukov, “O raspredeleniyakh, pochti periodicheskikh na beskonechnosti”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 170, VINITI RAN, M., 2019, 51–61
I. I. Strukova, “O nekotorykh svoistvakh pochti periodicheskikh na beskonechnosti funktsii iz odnorodnykh prostranstv”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 171, VINITI RAN, M., 2019, 47–56
A. Baskakov, V. Obukhovskii, P. Zecca, “Almost periodic solutions at infinity of differential equations and inclusions”, J. Math. Anal. Appl., 462:1 (2018), 747–763
A. G. Baskakov, L. Yu. Kabantsova, T. I. Smagina, “Invertibility conditions for second-order differential operators in the space of continuous bounded functions”, Differ. Equ., 54:3 (2018), 285–294
A. G. Baskakov, I. I. Strukova, I. A. Trishina, “Solutions almost periodic at infinity to differential equations with unbounded operator coefficients”, Siberian Math. J., 59:2 (2018), 231–242
A. G. Baskakov, N. B. Uskova, “Fourier method for first order differential equations with involution and groups of operators”, Ufa Math. J., 10:3 (2018), 11–34
A. G. Baskakov, V. E. Strukov, I. I. Strukova, “On the almost periodic at infinity functions from homogeneous spaces”, Probl. anal. Issues Anal., 7(25):2 (2018), 3–19
A. G. Baskakov, V. D. Kharitonov, “Spectral Analysis of Operator Polynomials and Higher-Order Difference Operators”, Math. Notes, 101:3 (2017), 391–405