Loading [MathJax]/jax/output/CommonHTML/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 97, Issue 2, Pages 174–190
DOI: https://doi.org/10.4213/mzm10285
(Mi mzm10285)
 

This article is cited in 32 scientific papers (total in 32 papers)

Harmonic and Spectral Analysis of Power Bounded Operators and Bounded Semigroups of Operators on Banach Spaces

A. G. Baskakov

Voronezh State University
References:
Abstract: Asymptotic representations of power bounded operators and bounded semigroups of linear operators acting in Banach spaces are obtained under the assumptions that the spectrum of bounded operators on the unit circle and the spectrum of the semigroup generator on the imaginary axis are countable. The methods of abstract harmonic analysis and the spectral theory of operators were used.
Keywords: power bounded operator, operator semigroup, harmonic analysis, spectral theory, asymptotic representation, Banach algebra.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00378
Russian Science Foundation 14-21-00066
This work was supported by the Russian Foundation for Basic Research (grant no. 13-01-00378) by the Russian Science Foundation (grant no. 14-21-00066 at Voronezh State University).
Received: 19.03.2013
Revised: 08.06.2013
English version:
Mathematical Notes, 2015, Volume 97, Issue 2, Pages 164–178
DOI: https://doi.org/10.1134/S0001434615010198
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. G. Baskakov, “Harmonic and Spectral Analysis of Power Bounded Operators and Bounded Semigroups of Operators on Banach Spaces”, Mat. Zametki, 97:2 (2015), 174–190; Math. Notes, 97:2 (2015), 164–178
Citation in format AMSBIB
\Bibitem{Bas15}
\by A.~G.~Baskakov
\paper Harmonic and Spectral Analysis of Power Bounded Operators and Bounded Semigroups of Operators on Banach Spaces
\jour Mat. Zametki
\yr 2015
\vol 97
\issue 2
\pages 174--190
\mathnet{http://mi.mathnet.ru/mzm10285}
\crossref{https://doi.org/10.4213/mzm10285}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3370505}
\zmath{https://zbmath.org/?q=an:06459065}
\elib{https://elibrary.ru/item.asp?id=23421506}
\transl
\jour Math. Notes
\yr 2015
\vol 97
\issue 2
\pages 164--178
\crossref{https://doi.org/10.1134/S0001434615010198}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350557000019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84941621581}
Linking options:
  • https://www.mathnet.ru/eng/mzm10285
  • https://doi.org/10.4213/mzm10285
  • https://www.mathnet.ru/eng/mzm/v97/i2/p174
  • This publication is cited in the following 32 articles:
    1. Vu Trong Luong, Nguyen Huy, Nguyen Minh, Nguyen Vien, “On asymptotic periodic solutions of fractional differential equations and applications”, Proc. Amer. Math. Soc., 2023  crossref
    2. V. E. Strukov, “On Distributions That Are Almost Periodic at Infinity”, J Math Sci, 263:4 (2022), 511  crossref
    3. I. I. Strukova, “On Some Properties of Functions Almost Periodic at Infinity from Homogeneous Spaces”, J Math Sci, 263:5 (2022), 643  crossref
    4. Nguyen Van Minh, Hideaki Matsunaga, Nguyen Duc Huy, Vu Trong Luong, “A Spectral Theory of Polynomially Bounded Sequences and Applications to the Asymptotic Behavior of Discrete Systems”, FE, 65:3 (2022), 261  crossref
    5. I. A. Vysotskaya, I. I. Strukova, “Issledovanie nekotorykh klassov pochti periodicheskikh na beskonechnosti funktsii”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 21:1 (2021), 4–14  mathnet  crossref
    6. Vu Trong Luong, Nguyen Van Minh, “A Simple Spectral Theory of Polynomially Bounded Solutions and Applications to Differential Equations”, Semigr. Forum, 102:2 (2021), 456–476  crossref  mathscinet  isi
    7. M. S. Bichegkuev, “Almost periodic at infinity solutions to integro-differential equations with non-invertible operator at derivative”, Ufa Math. J., 12:1 (2020), 3–12  mathnet  crossref  isi
    8. A. G. Baskakov, V. E. Strukov, I. I. Strukova, “Almost periodic at infinity functions from homogeneous spaces as solutions to differential equations with unbounded operator coefficients”, Eurasian Math. J., 11:4 (2020), 8–24  mathnet  crossref
    9. A. G. Baskakov, E. E. Dikarev, “Spectral theory of functions in studying partial differential operators”, Ufa Math. J., 11:1 (2019), 3–18  mathnet  crossref  isi
    10. V. E. Strukov, I. I. Strukova, “Garmonicheskii analiz medlenno menyayuschikhsya na beskonechnosti polugrupp operatorov”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 19:2 (2019), 152–163  mathnet  crossref  elib
    11. I. A. Krishtal, N. B. Uskova, “Spektralnye svoistva differentsialnykh operatorov pervogo poryadka s involyutsiei i gruppy operatorov”, Sib. elektron. matem. izv., 16 (2019), 1091–1132  mathnet  crossref
    12. A. G. Baskakov, V. E. Strukov, I. I. Strukova, “Harmonic analysis of functions in homogeneous spaces and harmonic distributions that are periodic or almost periodic at infinity”, Sb. Math., 210:10 (2019), 1380–1427  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. V. E. Strukov, “O raspredeleniyakh, pochti periodicheskikh na beskonechnosti”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g.  Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 170, VINITI RAN, M., 2019, 51–61  mathnet  crossref  elib
    14. I. I. Strukova, “O nekotorykh svoistvakh pochti periodicheskikh na beskonechnosti funktsii iz odnorodnykh prostranstv”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g.  Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 171, VINITI RAN, M., 2019, 47–56  mathnet  crossref  elib
    15. A. Baskakov, V. Obukhovskii, P. Zecca, “Almost periodic solutions at infinity of differential equations and inclusions”, J. Math. Anal. Appl., 462:1 (2018), 747–763  crossref  mathscinet  zmath  isi  scopus
    16. A. G. Baskakov, L. Yu. Kabantsova, T. I. Smagina, “Invertibility conditions for second-order differential operators in the space of continuous bounded functions”, Differ. Equ., 54:3 (2018), 285–294  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    17. A. G. Baskakov, I. I. Strukova, I. A. Trishina, “Solutions almost periodic at infinity to differential equations with unbounded operator coefficients”, Siberian Math. J., 59:2 (2018), 231–242  mathnet  crossref  crossref  isi  elib
    18. A. G. Baskakov, N. B. Uskova, “Fourier method for first order differential equations with involution and groups of operators”, Ufa Math. J., 10:3 (2018), 11–34  mathnet  crossref  isi
    19. A. G. Baskakov, V. E. Strukov, I. I. Strukova, “On the almost periodic at infinity functions from homogeneous spaces”, Probl. anal. Issues Anal., 7(25):2 (2018), 3–19  mathnet  crossref  elib
    20. A. G. Baskakov, V. D. Kharitonov, “Spectral Analysis of Operator Polynomials and Higher-Order Difference Operators”, Math. Notes, 101:3 (2017), 391–405  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:1461
    Full-text PDF :234
    References:163
    First page:129
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025