Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2016, Volume 7, Issue 1, Pages 71–82
DOI: https://doi.org/10.4213/mvk175
(Mi mvk175)
 

This article is cited in 4 scientific papers (total in 4 papers)

On the Hamming distance between binary representations of linear recurrent sequences over field GF(2k)GF(2k) and ring Z2n

O. V. Kamlovskiy

Sertification Research Center, LLC, Moscow
Full-text PDF (159 kB) Citations (4)
References:
Abstract: Linear recurrent sequences over the field GF(2k) and over the ring Z2n with dependent recurrent relations are considered. We establish the bounds for the Hamming distance between two binary sequences obtained from the initial sequences by replacing each element by its image under the action of arbitrary maps into the field of two elements.
Key words: linear recurrent sequences, binary representations of sequences, finite fields, cross-correlation function.
Funding agency Grant number
Академия криптографии РФ
Received 20.IV.2015
Bibliographic databases:
Document Type: Article
UDC: 512.547+512.552
Language: Russian
Citation: O. V. Kamlovskiy, “On the Hamming distance between binary representations of linear recurrent sequences over field GF(2k) and ring Z2n”, Mat. Vopr. Kriptogr., 7:1 (2016), 71–82
Citation in format AMSBIB
\Bibitem{Kam16}
\by O.~V.~Kamlovskiy
\paper On the Hamming distance between binary representations of linear recurrent sequences over field $GF(2^k)$ and ring $\mathbb{Z}_{2^n}$
\jour Mat. Vopr. Kriptogr.
\yr 2016
\vol 7
\issue 1
\pages 71--82
\mathnet{http://mi.mathnet.ru/mvk175}
\crossref{https://doi.org/10.4213/mvk175}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3562046}
\elib{https://elibrary.ru/item.asp?id=26475100}
Linking options:
  • https://www.mathnet.ru/eng/mvk175
  • https://doi.org/10.4213/mvk175
  • https://www.mathnet.ru/eng/mvk/v7/i1/p71
  • This publication is cited in the following 4 articles:
    1. O. V. Kamlovskii, K. N. Pankov, “Klass diskretnykh funktsii, postroennykh po neskolkim lineinym rekurrentam nad primarnym koltsom vychetov”, Diskret. matem., 37:1 (2025), 9–21  mathnet  crossref
    2. A. D. Bugrov, O. V. Kamlovskii, “Parametry odnogo klassa funktsii, zadannykh na konechnom pole”, Matem. vopr. kriptogr., 9:4 (2018), 31–52  mathnet  crossref  elib
    3. O. V. Kamlovskii, “Nelineinost odnogo klassa bulevykh funktsii, postroennykh s ispolzovaniem dvoichnykh razryadnykh posledovatelnostei lineinykh rekurrent nad koltsom Z2n”, Matem. vopr. kriptogr., 7:3 (2016), 29–46  mathnet  crossref  mathscinet  elib
    4. A. D. Bugrov, “The cross-correlation function of complications of linear recurrent sequences”, Discrete Math. Appl., 28:2 (2018), 65–73  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
    Statistics & downloads:
    Abstract page:483
    Full-text PDF :247
    References:79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025