Abstract:
We construct a class of Boolean functions defined by the significant bits of linear recurrent sequences over the ring $\mathbb Z_{2^n}$. For this class of functions bounds for nonlinearity coefficients are obtained.
Key words:
Boolean functions, Walsh coefficients, nonlinearity, linear recurrent sequences.
Received 30.V.2016
Bibliographic databases:
Document Type:
Article
UDC:519.113.6+519.719.2
Language: Russian
Citation:
O. V. Kamlovskiy, “Nonlinearity of a class of Boolean functions constructed using significant bits of linear recurrences over the ring $\mathbb Z_{2^n}$”, Mat. Vopr. Kriptogr., 7:3 (2016), 29–46
\Bibitem{Kam16}
\by O.~V.~Kamlovskiy
\paper Nonlinearity of a~class of Boolean functions constructed using significant bits of linear recurrences over the ring~$\mathbb Z_{2^n}$
\jour Mat. Vopr. Kriptogr.
\yr 2016
\vol 7
\issue 3
\pages 29--46
\mathnet{http://mi.mathnet.ru/mvk194}
\crossref{https://doi.org/10.4213/mvk194}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588372}
\elib{https://elibrary.ru/item.asp?id=28931393}
Linking options:
https://www.mathnet.ru/eng/mvk194
https://doi.org/10.4213/mvk194
https://www.mathnet.ru/eng/mvk/v7/i3/p29
This publication is cited in the following 3 articles:
A. D. Bugrov, O. V. Kamlovskii, “Svoistva klassov bulevykh funktsii, postroennykh iz neskolkikh lineinykh rekurrent nad koltsom vychetov $\mathbb{Z}_{2^n}$”, Matem. vopr. kriptogr., 15:4 (2024), 9–22
A. D. Bugrov, “Svoistva klassov bulevykh funktsii, postroennykh iz neskolkikh lineinykh rekurrent nad koltsom vychetov $\mathbb{Z}_{2^n}$”, PDM. Prilozhenie, 2023, no. 16, 12–14
D. U. Ernandes Piloto, “Klass bulevykh funktsii, postroennykh s ispolzovaniem dvoichnykh razryadnykh posledovatelnostei lineinykh rekurrent nad koltsom $\mathbb{Z}_{2^n}$”, PDM. Prilozhenie, 2019, no. 12, 75–77