Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2007, Volume 10, Number 1, Pages 29–96 (Mi mt29)  

This article is cited in 5 scientific papers (total in 5 papers)

On Rings Asymptotically Close to Associative Rings

A. Ya. Belov

Moscow Center for Continuous Mathematical Education
Full-text PDF (571 kB) Citations (5)
References:
Abstract: The subject of this work is an extension of A. R. Kemer's results to a rather broad class of rings close to associative rings, over a field of characteristic 0 (in particular, this class includes the varieties generated by finite-dimensional alternative and Jordan rings). We prove the finite-basedness of systems of identities (the Specht property), the representability of finitely-generated relatively free algebras, and the rationality of their Hilbert series. For this purpose, we extend the Razymslov-Zubrilin theory to Kemer polynomials. For a rather broad class of varieties, we prove Shirshov's theorem on height.
Key words: PI-algebra, representable algebra, universal algebra, nonassociative algebra, alternative algebra, Jordan algebra, signature, polynomial identity, Hilbert series, Specht problem.
Received: 17.01.2006
English version:
Siberian Advances in Mathematics, 2007, Volume 17, Issue 4, Pages 227–267
DOI: https://doi.org/10.3103/S1055134407040013
Bibliographic databases:
UDC: 512.552.4+512.554.32+512.664.2
Language: Russian
Citation: A. Ya. Belov, “On Rings Asymptotically Close to Associative Rings”, Mat. Tr., 10:1 (2007), 29–96; Siberian Adv. Math., 17:4 (2007), 227–267
Citation in format AMSBIB
\Bibitem{Bel07}
\by A.~Ya.~Belov
\paper On Rings Asymptotically Close to Associative Rings
\jour Mat. Tr.
\yr 2007
\vol 10
\issue 1
\pages 29--96
\mathnet{http://mi.mathnet.ru/mt29}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2485366}
\elib{https://elibrary.ru/item.asp?id=9483454}
\transl
\jour Siberian Adv. Math.
\yr 2007
\vol 17
\issue 4
\pages 227--267
\crossref{https://doi.org/10.3103/S1055134407040013}
Linking options:
  • https://www.mathnet.ru/eng/mt29
  • https://www.mathnet.ru/eng/mt/v10/i1/p29
  • This publication is cited in the following 5 articles:
    1. Yang Zhang, Jizhu Nan, Yongsheng Ma, “A conjecture of Mallows and Sloane with the universal denominator of Hilbert series”, Open Mathematics, 22:1 (2024)  crossref
    2. Vladimir Dotsenko, Nurlan Ismailov, Ualbai Umirbaev, “Polynomial identities in Novikov algebras”, Math. Z., 303:3 (2023)  crossref
    3. Belov-Kanel A., Rowen L., Vishne U., “Specht'S Problem For Associative Affine Algebras Over Commutative Noetherian Rings”, Trans. Am. Math. Soc., 367:8 (2015), 5553–5596  crossref  mathscinet  zmath  isi  scopus
    4. A. Ya. Belov, “The local finite basis property and local representability of varieties of associative rings”, Izv. Math., 74:1 (2010), 1–126  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. A. V. Grishin, L. M. Tsybulya, “On the structure of a relatively free Grassmann algebra”, J. Math. Sci., 171:2 (2010), 149–212  mathnet  crossref  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:526
    Full-text PDF :153
    References:88
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025